

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

Digitized by the Internet Archive

in 2013

http://archive.org/details/illiaciiireferen434mcco

T / AJ
Report No. I+3U COO-2118-0006

fU)- ^1 1LLIAC III REFERENCE MANUAL

VOLUME II: Instruction Repertoire

edited by
JHE UBRARX QE IbE

B. H. McCormick and B. J. Nordmann, Jr.

MAY 18 1971
D. E. Atkins, R. T. Borovec, L. N. Goyal , L. M. Katoh,

R. M. Lansford, J. C. Schwebel and V. G. Tareski gNlVEre^F^UNgs

February 26, 1971

COO-2118-0006

Report No. U3U

ILLIAC III REFERENCE MANUAL

VOLUME II: Instruction Repertoire

edited "by

B. H. McCormick and B. J. Nordmann, Jr.

D. E. Atkins, R. T. Borovec, L, N. Goyal, L, M. Katoh,
R, M. Lansford, J. C. Schwebel and V. G. Tareski

February 26, 1971

Department of Computer Science
University of Illinois
Urbana, Illinois 618OI

This work was supported by Contract AT(ll-l)-10l8 with the U,S.
Atomic Energy Commission through September 30, 1970. Current support
-lS under Contract AT(ll-l)-21l8 with the above agency.

ABSTRACT

The Illiac III Reference Manual is being issued in this

final documentation as four volumes:

Volume I

This issue Volume II

Volume III

Volume IV

The Computer System

Instruction Repertoire

Input /Output

Supervisor Organization

For ease of cross-reference an integrated table of contents will be

issued separately.

This section (Volume II) deals with the extraordinarily

diverse instruction repertoire of the Illinois Pattern Recognition

Computer (illiac III). As the"central processing units" of the machine,

a Taxicrinic Processor interprets these instructions and, if appropriate,

routes the relevant operands and control information to units of the

machine for execution: to the main store, arithmetic unit, pattern

articulation unit, and interrupt unit. Indirectly, by mediation of the

interrupt unit, the Taxicrinic Processor can also initiate and terminate

I/O operations.

Certain novel aspects of the instruction repertoire are

reiterated here. First, the Taxicrinic Processors interpret the unique

instructions to control plane parallel picture processing in the Pattern

Articulation Unit. (See Section 2.k) Secondly, because the latter

phases of image analysis so commonly involves graph transformations, the

machine code emphasizes a set of list processing instructions. Again to

permit ready implementation of list processing and graph transformation

languages, the imprimitive instructions are introduced in Section 2.2.10.

These provide the basis for a hardware-implemented macro-assembler, and allow

for efficient use of interpretive realizations of programming languages.

Finally it should be noted that the instruction repertoire,

particularly in the so-called "system instructions", Section 2.2.11, takes

full cognizance of the special problems facing an operating system

coordinating multiple processors in a multi-programming environment.

ACKNOWLEDGMENTS

The Illiac III Reference Manual is based in part upon

two earlier reports:

(l) B.H. McCormick (editor), William D. Bond, Kimio Tbuki , Roger
E. Wiegel and John A. Wilber, Preliminary Programming Manual
for the Illiac III Computer , Department of Computer Science
Report 185, University of Illinois, July 1965.

(.2) B.H. McCormick and R.M. Lansford (editors), D.E. Atkins, R.T.
Borovec, G.N. Cederquist, S.K.Chan, L.A. Dunn, J. P. Hayes,
L.M. Katoh, P.L. Koo, B.J. Nordmann, Jr., J. A. Rohr, and J.C.
Schwebel, Illiac III Programming Manual , Department of Computer.
Science Manual, University of Illinois, March 1968.

The present editors (B.H. McCormick and B.J. Nordmann, Jr.) acknowledge

with gratitude the contribution of these earlier groups as transplanted

to this greatly expanded manual. In addition, Dr. Rangaswamy Narasimhan

contributed significantly to the early definition of the pattern articula-

tion unit instruction set. In like manner Philip Merryman assisted

materially in the early formulation of machine-implemented jnacros—the

imprimitive instructions of Illiac III.

Authors and contributors to the manual are listed by principal

area of concern:

Taxicrinic Processor: B.J. Nordmann, Jr., R.M. Lansford,
J.C. Schwebel, R.E. Wiegel

Input /Output Processor: L.M. Katoh, V.G. Tare ski, J.V. Went a,
G.Eo Cederquist, J. P. Hayes

Arithmetic Units: D.E. Atkins, L.M. Goyal

Pattern Articulation Unit: R.T. Borovec, R.P. Harms, G.T. Lewis

Interrupt Unit: L.M. Goyal

Exchange Net: S.K. Chan, P. Krabbe

Scanner-Monitor-Video L.A. Dunn, L.M. Goyal, V.G. Tareski,
R.G. Martin, R.C. Amendola

Supervisor Organization: B.J. Nordmann, Jr., R. M. Lansford

The seemingly endless drafts and revisions of this manual have

been handled with patience and fortitude by Mrs. Betty Gunsalus and Mrs.

Roberta Andre'. Illustrations were prepared by Mr. Stanley Zundo.

ILLIAC III REFERENCE MANUAL: VOLUME II

INSTRUCTION REPERTOIRE

2.1 Instruction Format

2.1.1 Mnemonic Byte

2.1.2 Operand Phrases

2.1.2.1 Tag Field (TAG)

2.1.2.2 Slash Operation Field (S0)

2.1.2.3 Indirect Bit (i)

2.1.2.U Last Bit (L)

2.1.2.5 Flag Bit (F)

2.1.2.6 Modifier Field (M
Q

, M^

2.1.2.7 Modification Operation Bits (m , m)

2.1.2.8 Sequence of Operations for Operand Phrases

2.2 Instructions Executed by the Taxicrinic Processor

2.2.1 Single Cycle Data Transfers

2.2.1.1 Assign

2.2.1.2 Operand Stack Instructions

2.2.1.2.1 Push

2.2.1.2.2 Pop

2.2.1.2.3 Load

2. 2.1. 2. U Store

2.2.1.3 Masked Operations

2.2.1.3.1 Set

2.2.1.3.2 Reset

2.2.1.3.3 Test

2. 2,1. 3. k Test with Mask

2.2.2 Multiple Cycle Data Transfers

2.2.2.1 Operand Stack Field Transfers

2.2.2.1.1 Push Field

2.2.2.1.2 Push Field Reverse

2.2.2.1.3 Pop Field

2.2.2.1.U Pop Field Reverse

2.2.2.1.5 Pointer Manipulation

2.2.2.2 Field Comparison

2.2.2.2.1 Scan

2.2.2.2.2 Scan with Mask

2.2.2.3 Decimal Conversion

2.2.2.3.1 Pack Numeric

2.2.2.3.2 Unpack Numeric

2.2.2.4 String Manipulation

2 . 2 . 2 . 4 .

1

Move

2.2.2.4.2 Translate

2.2.2.4.3 Edit

2.2.3 Stack Utility

2.2.3.1 Exchange

2.2.3.2 Duplicate

2.2.3.3 Sluff

2.2.4 Logical Operations

2.2.4.1 Unary Logical

2.2.4.1.1 Zero

2. 2. 4. 1.2 One

2.2.4.1.3 Not

2.2.4.1.4 Count 0nes

2.2.4.1.5 Bit

2.2.4.2 Binary Logical

2.2.4.2.1 And

2.2.4.2.2 Or

2.2.4.2.3 Exclusive Or

2.2.4.2.4 Equivalence

2.2.4.2.5 Compare Logically

2.2.5 Shift

2.2.5.1 Left Shift

2.2.5.2 Right Shift

2.2.6 Conditional Instructions

2.2.6.1 If

2.2.6.2 If Not

2.2.7 Utility

2.2.7.1 Location

2.2.7.2 Specify

2.2.7.3 No Operation

2.2.8 Arithmetic Operations

2,2.8.1 Unary Arithmetic

2.2.8.1.1 Negate

2.2.8.1.2 Absolute Value

2.2.8.1.3 Minus

2.2.8.1.4 Test Algebraically

2.2.8. 1.5 Convert Short to Long Fixed Point

2.2.8.2 Binary Arithmetic

2.2.8.2.1 Fixed Point Addition

2.2.8.2.2 Fixed Point Subtraction

2.2.8.2.3 Fixed Point Algebraic Comparison

2.2,9 List Processing Instructions

2.2.9.1 Sequence Left

2.2.9.2 Sequence Right

2.2.9.3 Get Cell

2.2.9.^ Put Cell

2.2.9.5 Insert Cell Left

2.2.9.6 Insert Cell Right

2.2.9.7 Delete Cell Left

2.2.9.8 Delete Cell Right

2.2.10 Imprimitive Instructions

2.2.10.1 Operational Description

2.2.10.2 Go To

2. 2 . 10.

3

Execute

2.2.10.1+ Call

2.2.10.5 Exit

2.2.10.6 Name Permutation and Repermutation

2.2.11 System Instructions

2.2.11.1 Supervisor Operation

2.2.11.1.1 Supervisor Call

2.2.11.1.2 Supervisor Return

2.2.11.1.3 Rename

2.2.11.1.H Sleep

2.2.11.1.5 Activate TP

2.2.11.1.6 Reserve Unit

2.2.11.1.7 Load Task Register

2.2.11.1.8 Store Task Registers

2.2.11.2 Interrupt Handling

2.2.11.2.1 Set Interrupt Mask

2.2.11.2.2 Interrupt Return

2.2.11.3 Input /Output

2.2.11.3.1 Start I/O

2.2.11.3.2 Halt I/O

2.2.11.3.3 Load IOP Base Register

2.2.11.1+ Coordination

2.2.11. k.l Increment and Check

2.2.11.1+. 2 Link

2 . 2 . 11

.

h . 3 Who

2.2.11.5 Timing

2.2.11.5.1 Read Clock

2.2.11.5.2 Set Timer

2.2.11.5.3 Read Timer

2.3 Instructions Executed "by Arithmetic Units

2.3.1 Arithmetic Data Formats

2.3.1.1 Short Fixed Point

2.3.1.2 Long Fixed Point

2.3.1.3 Floating Point

2.3.1. 1+ Decimal

2.3.2 Arithmetic Instructions

2.3.2.1 Add

2.3.2.2 Subtract

2.3.2.3 Multiply

2.3.2.1+ Divide

2.3.2.5 Compare Algebraically

2.3.2.6 Convert to Decimal

2.3.2.7 Convert to Floating Point

2.3.2.8 Convert to Long Fixed Point

2.3.2.9 Polynomial Evaluation

2.3.3 Exceptional Conditions for Arithmetic Instructions

2.3.3.1 General

2.3.3.2 Overflow (OV)

2.3.3.3 Underflow (UN)

2.3.3.1+ Invalid Decimal Data (ID)

2.3.3.5 Loss of Significance (LS)

2.4 Instructions Executed by the Pattern Articulation Unit

2.4.1 Conventions

2.4.1.1 Planes and Borders

2.4.1.2 Direction Numbers

2.4.1.3 Indicators

2.4.1.3.1 Exceptional Conditions

2.4.1.3.2 Indicator Halfword

2.4.2 Zero-Plane Instructions

2.4.2.1 Topology

2.4.2.2 Set Origin

2.4.2.3 Resume

2.4.2.4 Restart

2.4.3 One-Plane Instructions

2.4.3.1 Data Formats

2.4.3.1.1 Coordinate Mode

2.4.3.1.2 Incremental Code

2.4.3.2 Clearp

2.4.3.3 Setp

2.4.3.4 Testp

2.4.3.5 Testb

2.4.3.6 Replicate

2.4.3.7 Shift

2.4.3.8 Tally

2.4.3.9 Tallyho

2.4.3.10 Area

2.4.3.11 List

2.4.3.12 Listsz

2.4.3.13 Listlz

2.4.3.14 Listi

2.4.3.15 Readlz

2.4.3.16 Rderlz

2.4.3.17 Erasep

2.4.3.18 Plot

2.4.3.19 Plotsz

2.4.3.2C Plotlz

2.4.3.21 Ploti

2.4.3.22 Writlz

2.4.3.23 Wrerlz

2.k.k Two-Plane Instructions

2. U.U.I Copy

2.4.4.2 Copyc

2 . 4 . 4 .

3

Pland

2.4.4.4 Plor

2 . 4 . 4 .

5

Plnand

2.4.4.6 Plnor

2.4.4.7 Plexor

2.4.4.8 Pleqr

2.4.5 Three-Plane Instructions

2.4.5.1 Connect

2.4.6 Multiple-Plane Instructions

2.4.6.1 Boole

2.4.6.2 Gate IA

2.4.7 Border Instructions

2.4.7.1 Data Formats

2.4.7.1.1 Raster String

2. 4. 7. 1.2 GB¥ Byte

2.4.7.2 Loadb

2.4.7.3 Storeb

2.4.7.4 Pushb

2.4.7.5 Popb

2.4.7.6 Moveb

2.4.8 Information on Boole Instruction

2.4.8.1 Availability List

2.4.8.2 Form for Specifying General Boolean Functions

2.4.8.3 Examples Illustrating the Coding

2.4.8.3.1 Purely Horizontal Logic

2.4.8.3.2 Purely Vertical Logic

2.4.8.3.3 General Three-Dimensional Logic

2. INSTRUCTION REPERTOIRE

This section (Volume II) deals with the extraordinarily

diverse instruction repertoire of the Illinois Pattern Recognition

Computer (illiac III). As the "central processing units" of the machine,

a Taxicrinic Processor interprets these instructions and, if appropriate,

routes the relevant operands and control information to units of the

machine for execution: to the main store, arithmetic unit, pattern

articulation unit, and Interrupt unit. Indirectly, by mediation of the

interrupt unit, the Taxicrinic Processor can also initiate and terminate

I/O operations.

Certain novel aspects of the instruction repertoire are

reiterated here. First, the Taxicrinic Processors interpret the unique

instructions to control plane parallel picture processing in the Pattern

Articulation Unit. (See Section 2.h) Secondly, because the latter

phases of image analysis so commonly involves graph transformations, the

machine code emphasizes a set of list processing instructions. Again to

permit ready implementation of list processing and graph transformation

languages
s the imprimitive instructions are introduced in Section 2.2.10.

These provide the basis for a hardware-implemented macro-assembler, and allow

for efficient use of interpretive realizations of programming languages.

Finally it should be noted that the instruction repertoire,

particularly in the so-called "system instructions", Section 2.2.11, takes

full cognizance of the special problems facing an operating system

coordinating multiple processors in a multi-programming environment.

2/25/71 Section 2-1/1

2.1 Instruction Format

Every Illiac III instruction can be considered to be in

prefix form: an operation (specified by a mnemonic byte)followed by

operands (designated by operand phrases), if any. An instruction

with n operands in main storage has n operand phrases respectively, each

one implicitly specifying the data address of the operand. In addition,

an instruction may call upon operands from the Operand Stack. In this

case, the operand address is implied by the mnemonic byte.

The general format for the Illiac III instructions is shown

in figure 2.1.

,D, ,, n n n

mnemonic operand phrase(s), mask, etc.

byte

Figure 2.1 Illiac III Instruction Format

This format consists of a single mnemonic byte normally

followed by one or more operand phrases. These phrases may be long

or short(see Section 2.1.2).

In primitive instructions the total length of these operand

phrases may not exceed h bytes. Some few primitive instructions, while

adhering to the U-byte constraint, have fields with alternate interpre-

tation: mask, etc.

In imprimitive instructions there may be up to 12 operand

phrases. Here however, no restriction is placed upon the total length

of the instruction.

1 For imprimitive instructions up to 12 operand phrases are allowed
(36 bytes max.)

.

2/2U/T1 Section 2.1 - 1/1

2.1.1 Mnemonic Byte

Every instruction is defined and initiated by a single

mnemonic "byte. The mnemonic byte may alone define the instruction

or it may have associated with it one or more operand phrases and/or

an auxiliary condition mask.

The instructions are partitioned into eight classes by

three fixed bits of the mnemonic byte (specifically, by the first 2

prefix bits and the flag bit). Some of these classes correspond to

familiar programming instruction sets: arithmetic, pattern articulation,

etc. Others designate the number of associated operands: zero, one,

two (for primitives) or arbitrary (for imprimatives)

.

The two low order data bits of the mnemonic byte are often

reserved for the Field Designator (FD) or the Number Type (NT). This

latter situation is peculiar to arithmetic instructions and is discussed

separately in Section 2.3.

The Field Designator (FD) is the operand field length (l, 2,

h or 8 bytes) if the operand phrase(s) refer to a core address. If

the operand phrase(s) refer to a Pointer Register, these bits indicate

the pointer field to be used, i.e. Link, Value, Segment Name or appropriate

combination thereof.

If the Immediate option was not specified by the (either)

operand phrase, the fields designated are used to refer to a core or

stack field; all flags of each field are transmitted. •

00 Byte

01 Halfword

10 Word {k bytes)

11 Double word (8 bytes)

1/21/10 Section 2.1.1 - 1/2

If the (either) operand phrase specifies the Immediate

option, the fields then designated are used to refer to program

register fields.

00 Value (no flags, halfword)

01 Link (no flags, halfword)

10 Link and Value (all flags, word)

11 Segment Name (no flags, halfword)

Not all instructions permit the Immediate option; see

instruction text where in doubt.

1/21/10 Section 2.1.1 - 2/2

2.1.2 Operand Phrases

Operand phrases provide a uniform technique throughout

Illiac III for addressing main storage and for operating on the 15

pointer stacks. In an operand phrase, the file (main store) address

of an operand is implied by giving the name of its associated pointer

stack. That is, the data address is specified by the topmost pointer

in the pointer stack named by the operand phrase tag field.

In addition to naming a pointer stack, an operand phrase

may also specify operations which modify the value of the pointer

and/or change the depth of the pointer stack. These operations take

place before, after, or both before and after the actual execution of

the kernel instruction.

The length of each operand phrase (l or 3 bytes) is speci-

fied by the flag of the first byte of each phrase: a flag of '0' indicates

a short phrase; a flag of '1' indicates a long phrase.

For primitive instructions a maximum of two operand

phrases (only one of which can be long) is allowed.

Additional single byte fields may be intermingled if pre-

scribed by the instruction format.

For imprimitive instructions a maximum of lk operand

phrases (long or short) is permitted. No other fields

may be intermingled. The terminal phrase is specified

by the low order data bit of the first byte of the operand

phrase: '0' if more phrases follow, '1' for the

terminal phrase.

Accordingly the instruction field is consecutively partitioned

into phrases until (a) the number of phrases specified by the mnemonic

byte is exhausted (primitives), or (b) a terminal bit is sensed

(imprimitives)

.

7/27/70 Section 2.1.2 - 1/2

Every operand, other than those in the top of the Operand

Stack, is designated by the use of an Operand Phrase.

Every operand phrase has one of two forms: a single»byte

short phrase or a three-byte long phrase. A short phrase is indicated

when the flag bit of the first byte is '0' ; a long phrase is indicated

when this bit is '1'

.

The fields of the two types of operand phrases are shown in

Figure 2.1.2.

F

SHORT PHRASE:

LONG PHRASE:

TAG FIELD

SLASH OPERATIC!*

INDIRECT BIT

LAST BIT

FLAG

TAG s ?1i1l|

a
TC

• ik—i

Modification
Operation

MODIFIER

Figure 2.1.2 Operand Phrase Format

7/6/70 Section 2.1.2 - 2/2

2.1.2.1 Tag Field (TAG)

The first k bits of the first byte of the operand phrase is

the tag field. This field designates, or names, one of the 15 pointer

registers which is to be operated, on renamed, or otherwise employed

in the construction of the operand address.

In a Taxicrinic Processor there are 15 pointer registers,

each having an associated 4-bit name register. As implied, the name

register holds the current name (e.g., PR_) of the pointer register.

At any given time each pointer register must have a unique name, i.e.

,

no two name registers may contain the same name.

When an imprimitive instruction is executed, some or all of

the names of the pointer registers may be permuted, i.e. , some or all

of the name registers may be changed, but after name permutation each

pointer register will still have a unique name. For the CALL and

EXECUTE imprimitive instructions the new name is specified by the

position of the phrase and its tag: the tag of the operator phrase

specifies which pointer register may be renamed PRn ; the tag of the

next operand phrase specifies which pointer register may be renamed

PR ; the tag of the third operand phrase specifies which pointer register

may be renamed PR ; etc. If there are less than 15 operand phrases

the remaining pointer register names are automatically permuted as

described below in Section 2.2.10.6.

For the CALL and EXECUTE imprimitive instructions, name

changing consists of possibly permuting every pointer register name.

For the G0T0 imprimitive instruction, name changing consists only of

possibly swapping the names of PR and the pointer register designated

by the tag field of the operator phrase. For any imprimitive instruction

the appropriate type of name change (permutation or swapping) will occur

unless a conditional subtraction failure occurs for some modification

as described below in Section 2.2.10.3.

7/6/70 Section 2.1.2.1 - 1/2

For imprimitive instructions two special conventions are

adhered to:

Because of its importance for imprimitive

instructions, the first such operand phrase, should

it exist, vill he designated as the operator phrase.

The function of the operator phrase is to control the

instruction pointer, PRn > and thus control program

flow. The format of the operator phrase is the same as

for a general operand phrase, except for a minor re-

striction: the S0 field is ignored.

In every imprimitive operand phrase, the last data

bit of the first byte is a Last bit (L). If L = '0'

,

more operand phrases follow; if L = '1' , this is the

terminal (i.e., last) operand phrase of the instruction.

For imprimitive instructions only, then, the tag field

of the operator phrase specifies which pointer register

may be renamed PRq. If the tag of the operator phrase is

0, the current instruction pointer register is modified as

specified by the modifier of the phrase. If the tag of

the operator phrase is not zero, the specified pointer is

modified by the modifier of the operator phrase, and then

that pointer may be renamed PR
n .

7/6/70 Section 2.1.2.1- 2/2

2.1.2.2 Slash Operation Field (S0)

The slash operations control the "pushing" and "popping"

of the designated pointer stack. The first "bit of the slash operation,

S0 is called the pre-slash and, if set to '1' , indicates that the

pointer stack is to be duplicated (pushed) before executing the in-

struction. Bit S0 is called the post-slash , and if set to ' 1' , in-

dicates that the pointer stack is to be popped after execution of the

instruction. The following table gives the interpretation of the four

possible variants:

Pre-Slash Bit Post-Slash Bit Operand Operation Initial/Final Operation

FINAL VALUE no push no pop

1 POP ON EXIT no push pop

1 SAVE INITIAL VALUE push no pop

1 1 INITIAL VALUE push pop

The interpretation expresses the status of the pointer of the

named operand file upon completion of the instruction.

Note: For imprimitive instructions the slash operations specified for

an operator phrase will be ignored ; they are implied by the

mnemonic byte.

7/6/70 Section 2.1.2.2 - l/l

2.1.2.3 Indirect Bit (i)

The interpretation of this hit depends on whether the phrase

is short or long. If the phrase is short, this bit is used to specify

Indirect addressing. If the phrase is long, this hit is used to

specify an Indirect Modifier.

Indirect Addressing ; If the phrase is short, the indirect

hit designates whether the effective operand address is

computed directly (1=0) or indirectly (l=l) from the speci-

fied pointer register. If indirect addressing is specified,

the pointer register specified hy the tag of the phrase is

used to access a halfword in core (flag hits excluded). This

halfword then replaces the value of the pointer register

specified hy the short phrase.

Indirect Modifier : If the phrase is long, this hit designates

whether the Modifier Field (M , M) contains the modifier

itself (1=0) or whether the Modifier points to a pointer

register (or 0S) which contains the modifier (l=l).

7/6/70 Section 2.1.2.3 - 1/1

2.1.2.1* Last Bit (L)

The last data bit of the first byte of an instruction operand

phrase has one of four interpretations depending on the instruction.

Last Bit (L) : In every imprimitive operand phrase, if

L = ' 0' , more operand phrases follow; if L = ' 1' , this is

the terminal (i.e., last) operand phrase of the instruction.

Count Phrase Bit (Ct) : If the primitive instruction requires

a count, e.g. Push Field, then the first operand phrase is

a count phrase. If Ct = ' 1' , then the pointer value speci-

fied by the tag is used as the count; if Ct = ' 0' , no count

exists and a flag on the data is used to terminate the

instruction.

Immediate Operand Bit (imm) : Some primitive instructions

allow the possibility of using a pointer register (or some

portion of it) as an immediate operand rather than as the

address of an operand. If Imm = ' 0' , the pointer will be

used as an address. For those instructions which allow

Immediate operands, if Imm = ' l 1

, the Field Designator bits

(FD) will be interpreted as follows:

00 Value field: right half of the PR, no flags

01 Link field: left half of the PR, no flags

10 Register: all of the PR, including flags

11 Segment Name field: Segment Name Register

corresponding to PR, no flags.

The instruction then applies to these fields of the pointer

specified by the tag of the phrase.

Note: Operand phrases which may have immediate operands

(count) are marked in this manual with an Imm (Ct) as a

superscript immediately following the phrase.

Unus ed : For many primitive instructions the last data bit

of the first byte of an operand is unused.

7/6/70 Section 2.1.2.H - l/l

2.1.2.5 Flag Bit (F)

The flag "bit always indicates whether the phrase is long or

short. For all operator/operand phrases if the flag bit is r 0' , the

phrase is short; if the flag bit is '1' the phrase is long and the next

two bytes specify a modifier to be applied to the pointer register

(value)

.

7/6/70 Section 2.1.2.5 - 1/1

2.1.2.6 Modifier Field (M , M)

A modifier field occurs only for a long phrase and consists

of the data bits of the second and third bytes of the phrase denoted

by M_ and M .

If the Indirect bit (i) = '0', the modifier is used directly

as specified by the Modification Operation Bits m and m . The modifier

value M is considered to be a l6-bit positive integer.

If the Indirect bit = ' 1'
, the leftmost four bits of M are

used to specify a Secondary Tag. The pointer value of the specified

secondary register is applied to the primary register as specified by

the Modification Operation Bits m and m . The secondary tag may

specify PRn) •••» PR-ie:' PR-ir i- s interpreted to mean that the Indirect

Modifier is to be taken from the top halfword cell in the 0S. The

contents of the secondary register (or $S) are not changed by this

process.

7/6/70 Section 2.1.2.6 - l/l

2.1.2.7 Modification Operation Bits (m
Q

, m^

The modification operation bits, (the flag bits on the second and

third bytes of a long operand phrase) denoted m and m.. , are used to specify

the operation to be performed on the pointer value after the pre-slash

operation (if any). The four possible operations are specified in the table

below.

Symbolm
o

m
l

Operation

REPLACEMENT

1 ADDITION

1 CONDITIONAL SUBTRACTION

1 1 NOT USED

REPLACEMENT causes the modifier M(or if Indirectly Modified, the

Secondary Pointer value) to replace the pointer value

specified by the tag of the phrase before execution of the

instruction.

ADDITION causes the modifier M (or if Indirectly Modified, the

Secondary Pointer value) to be added, modulo 2 to the

pointer value specified by the tag of the phrase before

execution of the instruction.

Note: If the tag of a phrase is zero, the addition is done

on the address of the first byte of the instruction; and a

transfer of control will occur prior to the execution of the

next instruction.

CONDITIONAL SUBTRACTION causes calculation of a test value by

subtracting the modifier M (or if Indirectly Modified, the

Secondary Pointer value) from the pointer value specified

by the tag (both treated as positive l6-bit integers) before

execution of the instruction.

11/19/70 Section 2.1.2.7 - 1/2

If the test value is greater than zero, the test value

replaces the specified pointer value and instruction pro-

cessing continues. If the test value is less than or

equal to zero, the specified pointer value is not modified.

Then after all operand phrases have "been processed, if a

conditional subtraction has "been attempted, the Conditional

Subtraction indicator (CS) is reset to the outcome of the

'OR' of any (possibly multiple) attempted conditional

subtractions.

If any conditional subtraction has failed, the instruction

is not executed, and any modifications performed on PR
n

are cancelled. Execution continues with the next instruc-

tion in sequence.

7/6/70 Section 2.1.2.7 - 2/2

2.1.2.8 Sequence of Operations for Operand Phrases

The following sequence of operations is used to process

operand phrases:

I. For the operator phrase of any imprimitive instruction:

1. If REPLACEMENT, ADDITION, or CONDITIONAL SUBTRACTION is

specified, it is performed on the specified pointer value.

Note: Slashing operations specified for an operator phrase

will be ignored.

II. For each operand phrase:

1. Preslash. If the preslash bit is '1* , a copy of the

specified pointer is pushed into its associated pointer

stack.

2.1 Short Phrase. If the Indirect addressing bit is 'l 1

, the

specified pointer value is modified (REPLACEMENT) by

the halfword modifier in core.

2.2 Long Phrase. If REPLACEMENT, ADDITION, or CONDITIONAL

SUBTRACTION is specified, it is performed on the

specified pointer value.

III. For each instruction (following the prescan):

1.1 If CONDITIONAL SUBTRACTION was not attempted, the instruction

is executed.

1.2 If CONDITIONAL SUBTRACTION was attempted, the CS indicator

is reset to the 'OR' of the results of the individually

attempted CS ' s

.

1.2.1 If no CS failed, the instruction is executed.

1.2.2 If any phrase failed CS, no name changing or

transfer of control occurs and any modifications

performed on PR are cancelled. For CALL and

EXECUTE processing of the imprimitive continues with

the past-scan.

11/30/70 Section 2.1.2.8 - 1/2

IV. For each operand phrase:

1. Postslash. If the postslash bit is '1', the pointer at

the top of the specified stack is popped out.

V. After all operand phrases have "been considered for post-

operations, control is passed to the location designated

by PR
Q

. If there was a CONDITIONAL SUBTMCTION failure,

the new location will be that of the next instruction in

core.

12/1/70 Section 2.1.2.8 - 2/2

2.2 Instructions Executed "by the Taxicrinic Processors

By definition all Illiac III instructions are initially

interpreted by a Taxicrinic Processor. The instructions des-

cribed in this section are, however, restricted to those whose

execution is performed entirely by a TP. This set includes

instructions for data transfer, operand stack modification,

logical/shift operations, fixed point addition/subtraction and

assorted supervisor actions.

2/25/71 Section 2.2 - l/l

2.2.1 Single Cycle Data Transfers

2.2.1.1 Assign

ASSIGN
Q

0, 0, 0,0 ,0 ,0
I
f,d|

_ , Imm _ , Imm
<0perand> <0perand>

D o

This two operand instruction may be used to transfer

data of variable field length to the address speci-

fied by the 'Destination' phrase (to the pointer it-

self if the Immediate option was specified) from

the address specified by the 'Source 'phrase (from

the pointer register itself if the Immediate option

has been specified.

)

NOTE: Since the length of the instruction is

restricted to at most 5 bytes, both operand phrases

cannot be long . However, either or both may be short,

By use of the Immediate option, the following transfers

may be obtained:

Destination\Source Immediate = '0 Immediate = '1

Immediate = '0'

Immediate = '1'

To Core From Core

To Register From Core

To Core From Register

To Register From Register

Indicators: bounds overflow, parity check.

,8/10/70 Section 2.2.1.1 - l/l

2.2.1.2 Operand Stack Instructions

This set of (k) single operand instructions provides for

moving data between the top of the OS and core memory (or pointer

registers, if the Immediate option is specified in the operand phrase)

For these instructions , operand address will designate either a core

address (imm = 0) or a program register (imm = l).

2.2.1.2.1 Push [0]
<0perand>

Imm
PUSH 10 ,1,0 ,0 .0 ,

0,F,D| '~*~*
S

A single operand field is transferred from the operand

address to the OS. The Operand Stack Pointer (0SP-PR#13)

is incremented by FD.

Indicators: bounds overflow, parity check.

2.2.1.2.2 Pop_

POP

E3
010010FDI
-j—i—i—i—i—

i

i I

<0perand>
Imm

A single operand field is transferred from the OS to

the operand address. The 0SP is decremented by FD.

Indicators: bounds overflow, parity check.

2.2.1.2.3 Load

LD

ED <0perand>
Imm

I Ql . Q 0. 1. 0,F D
1

S

The 0SP is decremented by FD. A 'PUSH' instruction is

then executed. (Effectively, the topmost field of

size FD in the OS is overwritten by the field at the

operand address.)

Indicators: bounds overflow, parity check.

2.2.1.2.4 Store

ST

to

0-1- Q 0.1-l.F.D
<0perand>

Imm

A 'POP' instruction is executed; the 0SP is then

incremented by FD. The OS is unchanged. (Effectively,

the top FD cell in the OS is duplicated at the operand

address.

)

Indicators: bounds overflow, parity check.

1/6/10 Section 2.2.1.2 - l/l

2.2.1.3 Masked Operations

2.2.1.3.1 Set QJ
SET

| 0,1,0,1 ,0 ,0 ,F.D|
<Operand>

Imm
D

2.2.1.3.2 Reset

The topmost FD field in the OS is treated as a mask.

Each bit of the mask which is ' 1' defines a corresponding

bit in the field at the operand address which is to be

set to '

l

1
. Bits in positions of the operand field

which correspond to zeros in the mask are unchanged.

The OS is not changed. (Effectively, an 'OR' between

the mask and operand field is performed.

)

Indicators: bounds overflow, parity check.

13
<0perand>

Imm

2.2.1.3

RESET 10,1,0,1,0,1, F,D|
-~^~—

D

The topmost FD field in the OS is treated as a mask. Each

bit of the mask which is '1' defines a corresponding bit

in the field at the operand address which is to be set

to zero. Bits in positions of the operand field which

correspond to zeros in the mask remain unchanged. The

OS is not changed. (Effectively, the mask is complemented

and AND'ed with the operand field.)

Indicators: bounds overflow, parity check.

3 Test
j^j

TEST 0,1,0,1,1 .0, F, D
<0perand>

D

The topmost FD cell in the 0S is treated as a bit pattern.

Bits in the top of the 0S are logically compared with the

bit pattern of the operand. The 0S is unchanged.

Status indicators are set according to the comparison

results.

Indicators: bounds overflow, parity check, greater, equal,

less, flags match.

1/6/10 Section 2.2.1.3 - 1/2

2. 2.1. 3.U Test with Mask [o|

TESTM 1 0.1.0. 1.1 .l.F.Dl
<0perand>

Ttiitti

The topmost FD field in the OS is treated as a hit

pattern. The next-to-top FD field in the OS is

treated as a mask.

Bits of the mask which are '1' define corresponding

bits in the cell at top of the 0S which are to be logically

compared with the bit pattern of. the source operand. The

defined data bits are compared for match or no match.

The OS is unchanged. (Effectively, the mask is AND'ed

with the data cell which is then logically compared

with the bit pattern.) Status indicators are set

according to the comparison results.

Indicators: bounds overflow, parity check, greater,

equal, less, flags match.

7/6/70 Section 2.2.1.3 -2/2

2.2.2 Multiple Cycle Data Transfers '

This class of (ll) instructions facilitates operations on

relatively long data fields. To accomplish this, several cycles of a

simpler type are performed.

All multiple cycle instructions require a count (Ct) phrase

and one or two operand phrases. If the count bit (Section 2.1. 2. k) is on

(Ct = 'l')» the specified pointer register contains a count, denoted M.

The instruction will operate on M cells of data. If the count bit of

a count phrase is off (Ct = '0')» the instruction continues until a byte

of the source data has a flag set to '1' . The cell with the flag set to

'1' is the last cell processed. If the cell size is not a byte, the

rightmost flag in the cell set to '1' will terminate the instruction.

2.2.2.1 Operand Stack Field Transfers

This set of k instructions may be used to transfer variable

length fields to and from the Operand Stack.

Programming note : Boundary alignment (or the lack of it) may seriously

affect the execution speed of these instructions. Namely, if the speci-

fied field does not start on a double word boundary, the instruction will

proceed a cell at a time until a double word boundary is encountered.

Execution then proceeds a double word at a time. Depending on the

alignment of the end of the field, the instruction may revert to a cell

at a time for the final fraction of a double word.

2.2.2.1.1 Push Field Q]
PUSHF

1 Q.0,1,0.0 ,0|F~J1
<C°Unt> <0Perand>S

The field beginning at the address specified by the source

operand is pushed into the Operand Stack. The order of

the cells is preserved. See Section 2.2.2.1.5. Following

7/6/70 Section 2.2.2.1 - 1/3

execution, the source Pointer Register will contain the

address of the cell following the last one processed.

Indicators: "bounds overflow, parity check

2.2.2.1.2 Push Field Reverse HI]

PUSHFR lO.O.mo.O.ltF.Dl
<Count> <Operand>

s

The field ending at the address specified by the source

phrase is pushed into the 0S. The order of the cells is

reversed. Following execution the source Pointer Register

will contain the address of the last cell processed.

See Section 2.2.2.1.5-

Indicators: bounds overflow, parity check

2.2.2.1.3 Pop Field Q]
P0PF |o. 0,0.0,0,1|fTd1

<C0Unt> <0Perand>D

Data are popped from the Operand Stack to the location

specified by the destination operand. The order of the

cells is preserved. Following execution the destination

Pointer Register will contain the address of the last

cell processed. (The pointer is decremented during

execution, see Section 2.2.2.1.5.)

Indicators: bounds overflow, parity check

2.2.2.1.1+ Pop Field Reverse Qj

•
P*™

I o.o.o.o,i.o I
f ,d 1

<Count> <0*erand>D

Data is popped from the Operand Stack to the location.

1/1/10 Section 2.2.2.1 - 2/3

specified by the destination phrase. The order of

the eells is reversed. Following execution, the

destination Pointer Register will contain the address

of the cell following the last cell processed. See

Section 2.2.2.1.5.

Indicators: hounds overflow, parity check

7/6/70 Section 2.2.2.1 - 3/3

2.2.2.1.5 Pointer Manipulation

The movement of the data pointers during execution of instruc-

tions 2.2.2.1.1 thru 2. 2. 2.1. k is summarized on the following page.

For each instruction, two data fields (byte length cells) are

represented: one in core, the second in the Operand Stack.

The symbols f , 'f are used to represent the initial and

final positions of the respective pointers (core, 0S).

The dotted arrow to the right of each figure indicates the

direction of the data flow.

Core

PUSHF

0S

All cells shown have size specified by FD

_i L

A B C D E

*
-

I
Core

1
T A B

1

C D
1

E

PUSHFR
t i t

0S I E D C B A

Core

P0PF

0S

A B C D E . 1
IV.

f J 1

I
A ^ c D E V

Core

P0PFR

0S

i B i a
E D C B A /

Figure 2.2.2.1.5 Pointer Manipulation Conventions

7/6/70 Section 2.2.2.1.5 - l/l

2.2.2.2 Field Comparison

These two instructions allow fields to be scanned for desired

bit patterns. The SCAN and SCANM instructions are simply multi-cycle

forms of the TEST and TESTM instructions respectively. If the operation

is^ terminated by a match, the Source Pointer Register will address the

matched cell. If the count is exhausted, or a flag terminates the

operation, the PR will address the following cell.

2.2.2.2.1 Scan [T]

SCAN
I n. n. i .n.i .n I

F,D| <Count><0perand>

The topmost FD cell in the 0S. is treated as a bit pattern.

Bits in the top of the 0S and logically compared with the

bit pattern of the operand. . The 0S is unchanged.

Status indicators are set according to the comparison

results. The instruction is terminated by a count, a

flag, or if a match is found.

Indicators: bounds overflow, parity check, flag match,

greater than, equal, less than.

2.2.2.2.2 Scan with Mask £9

SCANM
| Q Q I 1 1|F.D

1
<Count><0perand>

The topmost FD cell in the 0S is treated as a bit pattern.

The next-to-top cell in the 0S is treated as a mask.

Bits of the mask which are 'l 1 define corresponding bits

in the cell at the top of the 0S which are logically com-

pared with the bit pattern of the source operand. The defined

data bits are compared for match or no match. The 0S

is unchanged. (Effectively, the mask is AND'ed with

the data cells and then logically compared with the bit

pattern.) Status indicators are set according to the

comparison results. The instruction is terminated by

a count, a flag, or if a match is found.

Indicators: bounds overflow, parity check, flag match,

greater than, equal, less than.

7/6/70 Section 2.2.2.2 - l/l

2.2.2.3 Decimal Conversion

These two instructions convert fields of data to and from

packed decimal form.

2.2.2.3.1 Pack Numeric

PACK
Q

1 1 I

<Count><0perand>
(

The source operand specifies the address of the first

"byte of a field which is to be packed from a single

USACII-8 numeric character per byte to two characters

per byte packed decimal form in the 0S. An even number

of bytes must always be specified.

Indicators: bounds overflow, parity check, invalid count,

2.2.2.3.2 Unpack Numeric

UNPACK 1 1 1 I

<Count><0perand>

The 0S contains a packed decimal number. The destination

operand specifies the address of the last byte +1 in

core of the resulting unpacked number. The standard

USASCII-8 zone field is used for every character. The

count _rs to the number of packed bytes. An even

number of unpacked bytes always results.

Indicators: bounds overflow, parity check.

7/10/70 Section 2.2.2.3 - l/l

2.2.2.1+ String Manipulation

These three instructions allow displacement, character-by-

character translation and editing of variable length fields (strings).

2.2.2. l+.l Move

MOVE q q 1 3, q q Q 4 <Count><0perand> <0perand>

This instruction moves data from the source address

to the destination address. The order of bytes is

preserved by the instruction.

Note : All operand phrases must be short.

Programming Note : To gain efficiency, the move

instruction attempts to move a double word at a time.

However, if the beginning and/or ending address are

not on double word boundaries, the instruction

proceeds a byte at a time until a double word

boundary is encountered or the count is exhausted

(or a flag is encountered).

2.2.2.1+.2 Translate

TRANS ,0 ,1 ,1 ,0 ,0 ,0 ,1 <Count><0perand> <0perand>
c

The first source operand specifies the first byte

of a field to be translated. The second source

operand specifies the first byte of a 256 byte

translation table. For each byte to be translated,

the byte value is considered to be an 8-bit integer.

This integer is added to the second operand address

and the contents of the resulting addressed byte

replaces the byte to be translated. Translation

proceeds from left to right and takes place one byte

at a time. All bit combinations are valid.

Note

:

All operand phrases must be short.

12/1/70 Section 2.2.2.1+ _ 1/2

2.2.2. k. 3 Edit

EDIT
;

1^— <Count><Operand> <Operand>
0. 0.1.1.0.0. 1. 01 D S

The source operand specifies a source field con-

sisting of an even number of packed decimal characters

and/or the sign codes. The destination operand

specifies where the edited field will be placed.

The 0S contains the pattern in reverse order: The

top byte of the 0S is the first pattern byte. The

count specifies the number of pattern bytes to be

used. If there is no count a flag on a pattern byte

terminates the instruction after that byte has

"been processed. The pattern is in unpacked format

and may contain any valid USASCII-8 character. The

execution of the edit instruction consists of

editing the source field under control of the pattern

(which is popped out of the 0S) and placing the

result in the destination field. For a more complete

description, see the description of the IBM 360

Edit instructions in IBM manual A-22-6821.

Note: All operand phrases must be short.

8/20/70 Section 2.2.2.4 - 2/2

2.2.3 Stack Utility

This class of (3) instructions provides various stack

manipulation operations. Here FD refers to the k cell size variants

only; see Section 2.1.1.

2.2.3.1 Exchange

XCH ,0 I 1, o.i.o|f,d|

The top two FD cells in the OS are exchanged. First

the top two cells are POP'ed out; the top cell is then

PUSH'ed hack into the OS, followed hy the second, ef-

fectively reversing the relative positions of the cells

in the OS.

Indicators: bounds overflow.

2.2.3.2 Duplicate

DUP

2.2.3.3 Sluff

SLUFF

10 1 F D

The top FD cell in the OS is PUSH'ed into the OS,

duplicating itself.

Indicators: bounds overflow.

10
1 1 i

—

F D

The 0SP is decremented by FD, effectively "sluffing"

off (storing in a non-existent location) the top FD

cell in the OS.

Indicators: bounds overflow.

7/10/70 Section 2.2.3 - 1/1

2.2.4 Logical Operations

All of the (10) variable cell size instructions in this class

obtain their operands from the Operand Stack (os)- All are specified by

a mnemonic byte only. Here, FD refers to the 4 cell size variants only,

see Section 2.1.1.

(The bounds overflow indications in this section usually occur

as an "underflow" — i.e. , there are not sufficient cells in the OS to

complete the operation.

)

2.2.4,1 Unary Logical

This set of (5) instructions operates on a single operand at

the top of the 0S.

2.2.4.1.1 Zero

ZERO
1 n o n 5 n. nW~v]

All bits (including flags) of the top FD cell in the

OS are set to '0'.

> Indicators: none.

2.2.4.1.2 One

ONE | 0, 0, 0,0,0 ,1 IF ,D |

All bits (including flags) of the top FD cell in the

OS are set to '1'

.

Indicators: none.

2.2.4.1.3 Not

NOT
| 0, 0, 1, 1, 0, 0|F,D|

The bitwise one's complement (including flags) of the

top FD cell in the OS is formed and replaced in the

OS.

Indicators: none.

7/6/70 Section 2.2.4.1 - l/l

2.2.4.1.U Count 0nes

C0UNT lQ.0.0.0.1 .0 I F.Dl

The number of bits (including flags) in the top FD

cell in the OS which are l's is counted. This cell

is then pop'ed and the resultant halfword count is

PUSH'ed into the OS.

Indicators: bounds overflow.

2. 2.4.1. 5 Bit Q
BIT | 0, 0,0.0,1.1 | F.Dl

The bit address (including flags) of the first '1'

(counting from the left) in the top FD cell in the OS

is computed. The cell is then pop'ed and the resultant

halfword count is PUSH'ed into the OS.

Indicators: bounds overflow.

2.2.4.2 Binary Logical

This set of (5) instructions operates on the top and next-to-

top cells of the OS. These two cells are then POP'ed out and the result

is PUSH'ed into the OS. For the instructions AND, OR, X0R, and EQV, the

result is checked for zero and the equal and flags match indicators are

set accordingly.

2. 2. 4.2.1 And Q
AND 10,0.0,1,0 .0 | F.D|

The top two FD cells in the OS are POP'ed out. The

bitwise logical 'AND' of the two cells' is formed and

the resultant cell is PUSH'ed into the OS.

Indicators: bounds overflow, equal, flags match.

7/6/70 Section 2.2.4.2 - 1/2

2.2.4.2.2 Or

OR
I 0, 0, 0, 1.0.1IF.DI

The bitwise logical 'OR' of the top two FD cells in the

OS is formed, as in 'AND', above.

Indicators: bounds overflow, equal, flags match.

2.2.4.2.3 Exclusive Or ED

XOR (0. 0.0.1.1.0 IF.D1

The bitwise logical 'EXCLUSIVE OR' between the next-to-

top FD cell and the top FD cell in the OS is formed, as

in 'AND' , above.

Indicators: bounds overflow, equal, flags match.

2.2.U.2.U Equivalence GO

EQV iO .0 .0 1 1 1 [F. D

The bitwise logical 'EQUIVALENCE' of the top two FD

cells in the OS is formed, as in 'AND', above.

Indicators: bounds overflow, equal, flags match.

2.2. k. 2. 5 Compare Logically GO

CPRL
I 0. 0. 1. 0. 1. llF.Dl

The next-to-top FD cell is logically compared with the

top FD cell in the OS. The data bits of the next-to-top

cell are compared for greater than, equal to, or less

than the data bits of the top cell. The flag bits are

compared in their respective positions for a match

condition. Status indicators are set according to the

comparison results. The top cell is then POP'ed out

and lost.

Indicators: bounds overflow, parity check, greater,

equal, less, flags match.

7/6/70 Section 2.2. k. 2 -2/2

2.2.5 Shift

This class of (2) instructions provides the capability of

shifting a "byte, halfword or word at the top of the 0S. Here, FD

refers to the k cell size variants only, see Section 2.1.1.

2.2.5.1 Left Shift £)

LS
| Q, l, 1,0,0,0 I

F, Dl <Count>

The top FD cell (excluding double words) in the 0S is

shifted left the number of bit positions given by the

pointer register specified by the count operand. Bits

shifted off the left end are lost. Zeros are injected

on the right. Flags are shifted in steps of 8 only.

Indicators: parity check

2.2.5.2 Right Shift G3

RS JO. 1,1. 0.0 ,1 IF.DI <Count>

The top FD cell (excluding double words) in the 0S

is shifted right as in LS above. Zeros are injected on

the left. Flags are shifted in steps of 8 only.

Indicators: parity check

7/6/70 Section 2.2.5 - 1/1

2.2.6 Conditional Instructions

These two instructions are used to check the status of

various indicators within the TP as specified by the mask pointer

register. The indicators which may be checked and their corresponding

mask bits in the value field of the mask PR are given below:

PR Bit Condition

19 Conditional Subtraction

20 Overflow

21 Greater Than

22 Equal

23 Less Than

2k Flags Match

2/2^/71 Section 2.2.6 - l/l

2.2.6.1 If

IF Oi 0. 1, 1, 0, 1, 0, 01 <operand> , <operand>

The conditions specified by the value field of the PR whose

name is in the tag field of the first operand are tested. If any

condition is true, control is transferred to the instruction

located at the address specified by the second operand phrase. If

no condition is true, the next instruction in sequence will be executed.

2/23/71 Section 2.2.6.1 - 1/1

'2.2.6.2 If Not

IFN I 0, 0, 1, 1, 0, 1, 0, jj <operand>, <operand>

The conditions specified by the value field of the PR

whose name is in the tag field of the first operand are tested.

If any condition is false, control is transferred to the in-

struction located at the address specified by the second operand

phrase. If no condition is true, the next instruction in sequence

will be executed.

2/23/71 Section 2.2.6.2 - 1/1

2.2. T Utility

2.2.7-1 Location Q]

LOC |0. 0,0,1,0 .1 ,0 .0 I

The 2^-bit address of the instruction (preceded by a

byte of zeros) is pushed into the OS as a fullword.

The flags are cleared.

Indicators: bounds overflow

2.2.7-2 Specify Q
SPECIFY |

U, 0,0,1.0 ,1 ,0 1| <0perand
x
> , . . . , Operand >

The operations specified by the operand phrase(s) are

performed on the specified pointers. At least one

operand phrase must follow the mnemonic byte but there

is no upper limit on the number of allowable phrases.

As in the imprimitive instructions , the last bit of the

first byte of an operand phrase is used as a 'Last'

hit to indicate a terminal operand phrase.

Indicators: bounds overflow, CS

2.2.7-3 No Operation \j}

N0P 1 Q 1 0, 1, 1. 0|

No operation is performed. No operand phrases are

allowed.

7/6/70 Section 2.2-7 - 1/1

2.2.8 Arithmetic Operations

This class of (8) instructions consists of the subset of

Illiac III arithmetic operations which are performed in the TP's. For

these instructions, the AU is not used. For details about the flag

explanation, see Section 2.3.

2.2.8.1 Unary Arithmetic

The instructions use as their single operand the number at

the top of the 0S. These instructions do not check for invalid decimal

numbers

.

2.2.8.1.1 Negate m
N-EG

1 1. 01 0.1.0.0 IN .Tl
'

'

Fixed: Form 2's complement of the number at the

top of 0S.

Floating: Change the sign of the fraction of the

number at top of 0S.

Decimal: Change the sign of the decimal number at

top of 0S.

+ = (1011), - = (1101)

Flags : Unchanged

Indicators: OV (Fixed Only)

2.2.8.1.2 Absolute Value HI

ABS l. ol o. i. o.i In ,t 1

Form the absolute value of the number at the top of

the 0S.

Flags : Unchanged

Indicators: 0V (Fixed Only)

Although the decimal representation may be invalid, no ID check will

be made for unary operations

.

7/6/70 Section 2.2.8.1 - 1/2

2.2.8.1.3 Minus
HI

MNS 11.010.1.1, OIN.TI

Form the negative of the. absolute value of the number

at the top of the 0S.

Flags : Unchanged

Indicators: None

2.2.8.1.U Test Algebraically

ta a
1 .0 0.1 1 IN T

Compare the number at the top of the (jtS with zero and

set a Greater Than (GT), Less Than (LT), or Equal

Zero (EQ) indicator. Compare flag bits with zeros

and set Flags Match (FM).

0S unchanged.

Flags : Unchanged

Indicators: greater, less, equal and flags match

2.2.8.1.5 Convert Short to Long Fixed Point

CVL

l.olo.o.o . llo.ol

Convert the specified number at top of 0S into a long

fixed point number.

Flags: JVl * Vl

Indicators: None

7/9/70 Section 2.2.8.1 - 2/2

2.2.8.2 Binary Arithmetic

These instructions operate on the top two numbers in the 0S.

These operands are then POP'ed out and the result PUSH'ed into the 0S.

2.2.8.2.1 Fixed Point Addition [T]

ADD II. Oil .0 . 0. OlN.Tl

Add the top two numbers in the 0S, decrement the $SP

by cell size (of NT) and place the sum into the new top

of stack position.

Before ADD A B

After ADD A + B

Flags: F(A + B) «- F(A)

Indicators: 0V

2.2.8.2.2 Fixed Point Subtraction m
SUB l.Oll.O.l.OlN.T

Subtract the top number in 0S from the next-to-top

number, decrement the 0SP by cell size (of NT) and

place the difference in the new top of stack position.

Before SUB A B

After SUB A -- B
A

Flags : F(A - B) «- F(A)

Indicators

:

0V

7/6/70 Section 2.2.8.2 - 1/2

2.2.8.2.3 Fixed Point Algebraic Compariso;

CPRA
ta

1. oil. O.l.llN.T

Compare algebraically the next-to-top number in 0S

with the top number in the 0S. Set GT, LT, EQ Indi-

cators. Compare flags for match or no match and set

appropriate indicator.

Decrement 0SP by cell size.

If A - B > 0, set Greater Than (GT)

If A - B = 0, set Equal (EQ)

If A - B < 0, set Less Than (LT)

If flags of A match flags of B, set Flags Match (FM)

Before CPRA A B

After CPRA

Flags : Unchanged

Indicators: greater, less, equal and flags match

7/6/70 Section 2.2.8.2 - 2/2

2.2.9 List Processing Instructions

The list processing instructions are intended to supply

the basic operations for a variety of list processing systems.

The basic list processing element is the "cell". A cell

is an even number of contiguous bytes consisting of one or more

pointer fields followed by an optional number of data fields. The fields

can be thought of as any size, but the total length of the cell must

be an even number of bytes. This stipulation is consistent with the

cell alignment convention that a halfword pointer will never overlap

a halfword boundary, i.e. all the pointers must begin on an even byte.

The purpose of this cell format is to make the list pro-

cessing system as flexible as possible so that a wide variety of LP

system types can be utilized. As examples, bidirectional sequencing

of lists, such as those encountered in SLIP, may be performed if the

two sequence links point to the previous and succeeding cells. However

by having both links point to succeeding cells , one can construct and

scan binary trees. Stacks can be implemented by using only one pointer

field which points to the next entry in the stack. Minor modifications

to these structures will allow the construction of n-ary trees and

circular lists.

The basic sources of storage in the Illiac III list processing

instructions are the available space segments. There is always at

least one PR devoted to keeping track of available space (PR#lU).

In addition the programmer may dedicate other PR's to keeping track of

available space if this is desired. The cells in available space may

vary in size from k bytes on up. However a different PR must be used

for each different cell size.

The cells for the structure are obtained using GET to obtain

the needed cells and PUT to return them to Available Space when no

longer needed. The structure can be built by using INCL and INCR, if

7/2U/70 Section 2.2.9 - 1/2

bidirectional lists are being formed, by the slash conventions if stacks

are being used, or by combinations of ASSIGN, SPECIFY, and other

Illiac III instructions for other types of structures

.

In scanning through the various structures, a search is

carried out using a pointer register as a "bug" (in the L sense). The

SR and SL instructions cause the PR to follow one of two possible pointers

and loads the present location of the "bug" into the top of the OS.

In general, the OS is used to contain pertinent addresses.

It should be noted that the insert and delete instructions

are by far the most specialized since they specifically assume that

the list structure is to be a bidirectional list (e.g. SLIP lists).

One reason for the direct implementation of these instructions was

that without them SLIP implementation would be fairly inefficient when

compared with Illiac III machine language. With these instructions,

however, in combination with the other list processing instructions,

it is virtually possible to implement a machine language level version

of SLIP.

7M/70 Section 2.2.9 - 2/2

2.2.9.1 Sequence Left m
SL

The first k bytes of the cell pointed to by the left

link of the PR specified by the tag of the operand

phrase are loaded into that PR. The top halfword

of the OS is loaded with the old left link.

Indicators: bounds overflow, parity check

2.2.9.2 Sequence Right HI
:

I <0perand>
,
1

,

0, 0,0,1
,
0,11SR

The first k bytes of the cell pointed to by the right

link of the PR specified by the tag of the operand

phrase are loaded into that PR. The top halfword of

the OS is loaded with the old right link.

Indicators: bounds overflow, parity check

2.2.9-3 Get Cell rn

GET 01 001 001 <0perand>
'

' '

AS

Remove the top cell from the Available Space list

specified by the PR named by the tag of the operand

phrase and push its address (halfword) into the OS.

Indicators: bounds overflow, parity check

2.2.9.4 Put Cell S
PUT 0. 1, 0. 0. 1. 1.0 .1

1

<0perand>

Put the cell whose address appears in the top halfword

of the OS in the Available Space list specified by

the tag of the operand phrase and then sluff this

address out of the stack.

Indicators: bounds overflow, parity check

7/24/70 Section 2.2.9-1- 1/1

2.2.9.5 Insert Cell Left

INCL

m
10 1 o 1 <Operand>

(

Core A:

The operand phrase names the PR which contains the

links of the current cell. Thus, the left (right)

pointer halfword is assumed to "be a backward (forward)

link. The OS contains the address (halfword) of a

new cell to be inserted between the current cell and

the cell pointed to by the left link. The OS is then

popped. (Note: the current cell (B) is not pointed

to by PR. .

)

Indicators: bounds overflow, parity

The modified links are shown below:

0S PR. (images current cell,

i.e. cell I

B

A
x. e.

V
\ s
\ \
\ \
\ \
\ s

B: A

Before Inserting Cell Left.

Core A

0S

C

PR. (images current cell,

i.e. cell I

C
v. k
\ \
\ \
\
\
V

\
\
\

B: C

A BC:

After Inserting Cell Left

7/24/70 Section 2.2.9.5 - 1/1

2.2.9.6 Insert Cell Right —
INCR l0,l,0,l,0,l,0TI <°Perand>S

The cell whose address is contained in the top halfword

of the OS is inserted to the 'right' of the current

cell. Link operations are symmetric with INCL.

(Note: the current cell (B) is nob pointed to by PR. .

)

Indicators: bounds overflow, parity

2.2.9.7 Delete Cell Left H
DECL <Operand>,

0,1,0, 1,1,0, 0,11 - D

The bidirectional list structure of INCL and INCR

is assumed. The cell pointed to by the left link

of the specified PR is deleted and its address is

pushed into the OS. The instruction may be thought of

as the inverse of INCL.

Indicators: bounds overflow, parity

2.2.9.8 Delete Cell Right

DECR 0,1,0 , 1.1,1. 0,1

LH
<0perand>

D

The bidirectional list structure of INCL and INCR

is assumed. The cell pointed to by the right link of

the specified PR is deleted and its address is

pushed into the OS. The instruction may be thought

of as the inverse of INCR.

Indicators: bounds overflow, parity

T/2U/T0 Section 2.2.9.6- l/l

2.2.10 Imprimitive Instructions

The imprimitive instructions G0T0, EXECUTE, CALL, and

EXIT are used to accomplish transfers of control (temporary or

permanent) and to simultaneously modify pointer stacks. Imprimitive

instructions operate only on the pointer stacks (including their names)

no terminal action is performed on any data. In some cases an

imprimitive instruction can he considered to he an instruction whose

definition must he obtained,, since imprimitive instructions provide a

means of calling subroutines.

An imprimitive instruction consists of an mnemonic hyte

optionally followed hy operand phrases . Except for one hit (the

LAST hit), the interpretation of an imprimitive operand phrase is

identical to that of a primitive operand phrase.

7/2H/70 Section 2.2.10 - 1/1

2.2.10.1 Operational Description

The four imprimitive instructions can be separated into two

groups: the first group consists of the G0T0 and EXIT instructions

which effect permanent transfers of control; the second group consists

of the EXECUTE and CALL instructions which effect temporary transfers

of control. The execution of instructions which effect a temporary-

transfer of control includes a complete name permutation as described

below in Section 2.2.10.6 to link actual parameters with formal

parameters

.

The following sections give detailed descriptions of each

imprimitive instruction. For purposes of discussion, modification

operations are REPLACEMENT, ADDITION, and CONDITIONAL SUBTRACTION.

Preoperations (i.e., operations prior to effective address construction

and instruction execution) are the above modifications, indirect

addressing modifications, and preslash. Postoperations are the post-

slash pointer stack adjustment.

A transfer of control in Illiac III can be accomplished in

either of two ways: modification of the value of PR_ (by a primitive

or imprimitive instruction) or by changing the register designated PR

(by an imprimitive instruction). Since the location of the next

instruction is always designated by the (current) value of PR , either

of these methods will effect a transfer of control. For the EXECUTE

and CALL imprimitive instructions the address of the instruction must

be saved so that the postoperations may be performed when control is

returned. The proper place to store this virtual address (Segment

Name and Value) is in the new PR
n

- Since the value of the new PR

will be the current instruction pointer, the return address must be

stored one level below the top of the new instruction stack. Thus it

is necessary that the level of the instruction pointer stack be the

same when leaving a CALL'ed or EXECUTE' d instruction string as it was

upon entry.

After the last operand phrase has been considered for pre-

operations (i.e., at the completion of the prescan) several values must

be available to complete the operations of an imprimitive instruction.

7/2V70 Section 2.2.10.1 - 1/2

The particular values required depend on the instruction being executed,

whether or not the tag of the operator phrase is zero, and whether or

not there has been a conditional subtraction failure in some phrase.

The values which may be needed are as follows:

1. The address of the first byte of the imprimitive

instruction, denoted a .

2. The address of the next instruction in core, a + 3,

where 8 denotes the length of the imprimitive instruction.

3. The modified value of PR , denoted a ' if any modifi-

cation of PR has occurred.

Note that any modifications made to PR are made to the

second level of the stack since the top level must be used to control

the scan of the imprimitive instruction. After the scan is completed

the extraneous value is discarded.

7/2V70 Section 2.2.10.1 - 2/2

2.2.10.2 Go To
pH <operator> [<operand > . .

.

G0T0
| 0,0 ,Q , 1,0,0 , 1, 0| . . • <operand >

]

The G0T0 instruction effects a permanent transfer of

control. The name of the pointer register specified by

the tag of the operator phrase and the name of PR
n

are

exchanged during the execution of a G0T0 instruction.

If one or more phrases specify Conditional Subtraction,

then following completion of the prescan, the CS indicator

will be reset to the 'OR' of the results from the indi-

vidual Conditional Subtraction attempts. If no phrases

specify Conditional Subtraction, the CS indicator will

not be reset.

If one or more phrases failed CS, control pointer names

are not swapped, the instruction is not executed, and,

in addition, any modification performed on PR
n

is cancelled.

The next instruction executed is the one immediately fol-

lowing in core.

If no phrases fail Conditional Subtraction (or Condi-

tional Subtraction was not specified) , normal execution of

the G0T0 takes place: name swapping occurs and the

transfer of control completes the instruction. The ADDITION

modification of PR_ is performed relative to the address

of the first byte of the current instruction.

No postoperations are ever done for a GT instruction.

Figure 2.2.10.2/1 illustrates typical register values prior

to scanning the instruction. Three hardware registers are illustrated.

Above, is the U-byte Spare Buffer Register (SBR). In what follows,

this register is used as two halfword registers which hold volatile

information during the scan of the instruction. The value and segment

name are associated with the left and right halfwords respectively of

the SBR.

7/24/70 Section 2.2.10.2 - 1/4

As shown, PR^ and PR. have the initial values a_ , and3
1

a. , respectively. Here a is the address of the next instruction:

in this case, a G0T0 instruction.

Figure 2.2.10.2/2 illustrates the contents of important

stacks following completion of the prescan. Two cases are distinguished:

a. The operator phrase specifies PR.,(i # 0).

Thus PR will be renamed.

b. The operator phrase specifies PR
n

«

Hence PR will not be renamed.

At the start of the prescan, the value and segment name of

PR are saved in the SBR as shown. The scan then proceeds, using PR

as the instruction counter. Should an operator/operand phrase specify

modification of PR , the value of PR held in the SBR will be modified.

Thus, modification of PR
n
takes place with respect to the beginning of

the instruction.

In Figure 2.2.10.2/2, the value of PR has been incremented

during the scan and is now a + 3, where 3 is the instruction length.

The SBR will contain the modified value of PR , if such a modification

was specified; otherwise it will contain the original value of PR
n

«

Prior to exchange it must be determined whether PR must be reloaded

with the contents of the SBR. (PR
n

an^ PR - may have different Segment

Name s .)

Figure 2.2.10.2/3 illustrates the register contents following

execution of the instruction, provided no phrase failed Conditional

Subtraction. Notice that if the operator tag was not zero, the names

of PR and PR. are exchanged. No post scan, and hence, no postslashing

is performed for a G0T0 instruction; the SBR will be transferred to

PR provided one of the three pointer modifications has successfully

taken place (Section 2.1.2.7). The next instruction will then be pointed

to by the new PR
n

-

Figure 2.2.10.2/U illustrates the register contents if one

or more phrases failed Conditional Subtraction. In this case, pointer

names have not been swapped and PR contains a + 3, the address of the

next instruction in sequence.

T/2U/70 Section 2.2.10.2 - 2/k

SBR

PR, PR. Level PR.

Tag # Tag =

Figure 2.2.10.2/1 G0T0: Before Presc an

a
o
/a

o SBR

PR.

a +t

PR

a. /a!
l l

Level

1

PR,

V

Tag ± Tag =

Figure 2.2.10.2/2 G0T0: Following the Prescan

T/21+/T0 Section 2.2.10.2 - 3A

o/
a
o

ou/a
SBR

PR. PR.
1

a . /a .'

i' 1
ao/ a

o

a
i

Level
PK

o

a
o

1

Tag i Tag = 0; a must be modi-

fied (i.e. a^ ^ a)

Figure 2.2.10.2/3 G0T0: Post-execution, no CS failure

o/^o"
a^ / a

SBR

PR„ PR Level PR.

aQ+ i a. /a. /a:
1/ l °0+{

Tag # Tag =

Figure 2.2.10.2/1+ G0T0: Post-execution, CS failure

7M/70 Section 2.2.10.2 - k/k

2.2.10.3 Execute m r

UJ <operator>L<operand >. . .

J ...<operand >]
0,0.0 . 1,0,0 .0 , ll * nEXECUTE

The EXECUTE instruction effects a temporary transfer

of control. A complete name permutation occurs

during the execution of an EXECUTE instruction.

If one or more phrases specify Conditional Subtraction,

then following completion of the prescan, the CS indi-

cator will be reset to the 'OR 1 of the results from

the individual CS attempts. If no phrases specified

Conditional Subtraction, the CS indicator will not be

reset.

After the execution of a single (primitive or

imprimitive) instruction at the address specified by

the new PR , or immediately after the preoperations

if there was a CS failure, the postoperations specified

are performed on the operator and operand phrases.

Then the next instruction to be executed is fetched

from the location designated by PRn « It must be-

remembered that ADDITION of PR
n

is always performed

relative to the address of the first byte of the

current instruction.

Execute Prescan :

Figures 2.2.10.3/1 through 2. 2. 10. 3A pertain to the

discussion following. Much of the discussion for

G0T0 applies equally well to EXECUTE (and CALL).

The initial register arrangement is assumed to be

the same as shown in Figure 2.2.10.2/1 and has thus

been omitted.

Figure 2.2.10.3/1 shows the registers following pro-

cessing of the operator phrase. The entires at level 2

represent the original values in these registers.

Level 1 contains the return address; a (segment name

and value) have been inserted here.

T/2U/T0 Section 2.2.10.3 - lA

In each ease, PR at level is used to process

the scan and has, in the example, been incremented

by the appropriate amount. If the tag of the operator

phrase is not 0, (i.e. PR.), level contains the

modified value; the location to which control is

ultimately to be passed. If the operator tag is 0,

the modified value is stored in the SBR.

Figure 2.2.10.3/2 shows the corresponding arrange-

ment following completion of the Prescan and Name

Permutation (Section 2.2.10.6). At this point, pro-

vided no phrase failed Conditional Subtraction, the

Execute bit (the leftmost bit of the new PR„) is

set ON (= '1') and control passes to a. '(or a '
)

.

Thus, EXECUTES are "stackable" to any depth. Following

execution of a primitive (or imprimitive) instruction,

the execute bit is always examined. If it is on, of

if one or more phrases failed CS , an EXIT instruction

executed and control passes to the Execute postsean

sequence.

Execute Post-Scan

The EXECUTE post-scan is begun immediately if any

phrase failed CS or following completion of a successful

EXECUTE (or CALL). It is the responsibility of this

sequence to repermute the names, make any necessary

stack adjustments required by the instruction, and

process the post-operations of the operand phrase(s).

The initial register configuration is seen in

Figure 2.2.10.3/3. Following completion of the post-

scan, the names are repermuted. The final register

configuration is that of Figure 2.2.10. 3A-

Note : Any registers manipulated because of execution

of the order itself will be restored to their original

levels. If used in the meantime, the programmer

must assure that the stack level is as shown before

the postsean.

7/2U/70 Section 2.2.10.3 - 2/1+

SBR

PR. PR. Level PR,

V 3
'

3' =2 or k

i.e. length
of mnemonic
& operator
phrase

a. /a!
1 l

a„ +

Tag 4 Tag = 0; a must be
modified, i.e.

a
o
V

Figure 2.2.10.3/1 EXECUTE (or CALL): Following processing of
the operator phrase

a /a

'

0'
SBR a'

PR.
J

PR
o

Level PR
o

V 3
/°o

a. /al
l l

1

2

a +3 is retained only
if there has "been a

CS failure

a
Q

+ 6/a.

a
o

a
o

a
o

a
o

Tag i Tag =

Figure 2.2.10.3/2 EXECUTE (or CALL): Following the Prescan

T/2U/T0 Section 2.2.10.3 - 3/k

SBR

PR.

V 3/a
q

PR,

Tag +

Level

1

PR,

a +3 is retained only
if there has been a Tag =

CS failure.

Figure 2.2..10.3/3 EXECUTE (or CALL): On Entry to the Postscan

SBR

PR. PR.

v f

Tag i

Level PR,

V f

Tag =

Figure 2.2.10.3/U EXECUTE (or CALL): Following Completion of

the Postscan

7/24/70
Section 2.2.10.3 - h/h

2.2.10.1+ Call r

[~ll
<operator>L<operand >

. . . <operand >]
CALL 00,0 100,0,0 "• ^^^^

n
-

The CALL instruction effects a temporary transfer of

control. A complete name permutation occurs during the

execution of a CALL instruction. The CALL instruction

is identical to EXECUTE instruction except that for

the CALL instruction, instruction execution proceeds

at the location designated by the new PR , not for

a single instruction as for EXECUTE, hut until an

EXIT instruction is encountered.

7/21+/70 Section 2.2.10. k - l/l

2.2.10.5 Exit

EXIT

m
000 1 001 ll

1 I I I I I 1 1

The EXIT instruction is used to explicitly (implicity)

return control to a CALL (EXECUTE) post scan. The

instruction consists of a mnemonic byte only; no

operator/operand phrases are allowed.

EXIT requires PR to be arranged as is shown in

Figure 2.2.10.5. Level is used to perform the scan.

The stack is then popped, thus returning to location

a.'. Control is passed to the EXECUTE (CALL) post-

scan sequence in order to complete the EXIT instruction.

PR, Level

Figure 2.2.10.5 EXIT: Initial State of PR
Q

Stack

T/2U/T0 Section 2.2.10.5 - l/l

2.2.10.U Call r

i~TI
<operator> L <operand >

100,001 •'• operand >]
i I i i i I I I

±±CALL j iii
The CALL instruction effects a temporary transfer of

control. A complete name permutation occurs during the

execution of a CALL instruction. The CALL instruction

is identical to EXECUTE instruction except that for

the CALL instruction, instruction execution proceeds

at the location designated by the new PR , not for

a single instruction as for EXECUTE, but until an

EXIT instruction is encountered.

7/2U/70 Section 2.2.10.1* - l/l

2.2.10.5 Exit

EXIT

m
000 1 1 1 I

I I I I I 1 I 1

The EXIT instruction is used to explicitly (implicity)

return control to a CALL (EXECUTE) postscan. The

instruction consists of a mnemonic byte only; no

operator/operand phrases are allowed.

EXIT requires PR to be arranged as is shown in

Figure 2.2.10.5. Level is used to perform the scan.

The stack is then popped, thus returning to location

a.'. Control is passed to the EXECUTE (CALL) post-

scan sequence in order to complete the EXIT instruction.

PR, Level

1

Figure 2.2.10.5 EXIT: Initial State of PR
Q

Stack

7M/70 Section 2.2.10.5 - 1/1

2 . 2 . 10 . 6 Name Permutation and Repermutation

For the CALL and EXECUTE imprimitive instructions the names

of some or all of the pointer registers may be permuted. This will

occur if there is no conditional subtraction failure in any phrase.

The purpose of name permutation is to link actual parameters from an

old control sequence to formal parameters of a new control sequence.

The renaming process is performed so that the old PR names

are changed to new names beginning with 0, 1, 2 through ik. Thus the

PR indicated by the tag of the operator phrase is renamed 0, the

PR named by the tag of the next operand phrase is renamed 1, and so

on to a maximum of 15 operand phrases.

Since the sequence of tags may not specify a complete

permutation, the permutation must be completed by the TP. If the

number of names in the tag sequence is i, then the names through

i-1 have been used as new names for the PR's. Therefore the old PR

names between and i-1 must be checked to make sure that all of them

have been changed. If not , there will be more than one PR with the

same name. Thus, each PR whose name is <_ i-1 and which was not re-

named during the processing of the initial tag sequence, is given a

new name. These new names are taken from those used in the tag

sequence which > i-1. These names are applied in numerical order to

the unchanged names <_ i-1.

An example will demonstrate this process more clearly.

Given the tag sequence 11, 8, 3, 5, 0, the name changes will occ ,
j i"

as follows

:

"old" PR Names 3 2 3 . h 5 6 7 8 9 10 11 12 13 l 1

new" PR Names >i 5 8 2 11 3 1

7/2U/70 Section 2.2.10.6 -1/2

1) the PR now named 11 will "be renamed

2) the PR now named 8 will be renamed 1

3) the PR now named 3 will be renamed 2

h) the PR now named 5 will be renamed 3

5) the PR now named will be renamed k

At this point the tag sequence ends so the old PR's named through k

must be checked to see if they were renamed.

6

)

old PR has been changed .
"

. do nothing

7) old PR 1 has not been changed .".rename it 5

8) old PR 2 has not been changed .*. rename it 8

9) old PR 3 has been renamed .'. do nothing

10) old PR k has not been renamed .'. rename it a 11

If and when the "new" control sequence decides to return

to the "old" sequence, the TP must "undo" the name permutation to

get back the old PR names. This is done by rescanning the imprimitive

instructions and performing the opposite operations from those- given

above. This process is called "repermutation".

7M/70 Section 2.2.10.6 - 2/2

2.2.11 System Instructions

The Illiac III Operating System has three major components:

the Executive Program, the Supervisor Program and the Operating System

Tables. The TP itself is most directly concerned with the Supervisor

Program since it is that protion of the Operating System which has

direct contact with operating tasks.

The Taxicrinic Processors have been designed so that the

operations of the Supervisor Program might be facilitated. With this

in mind several instructions have been implemented which can be used

by the supervisor to perform its assigned functions. System instructions

provided can be divided into five groups: for supervisor operation,

interrupt handling, input/output, coordination, and timing respectively.

2/25/71 Section 2.2.11 - l/l

2.2.11.1 Supervisor Operation

The Supervisor instructions are directly concerned

with the use and operation of the Illiac III System Supervisor.

With the exception of SVC and STR, these instructions are all

protected instructions and can therefore only be used when the

TP is in the Supervisor mode.

2/25/71 Section 2.2.11.1 - l/l

2.2.11.1.1 Supervisor Call

SVC 10.0,1,1,1,1.0,0

Supervisor Call is an unprotected instruction

executed "by a user task to transfer control to its

supervisor task. The supervisor task which will

obtain control is determined by the contents of the

Task Register

The current contents of all Pointer Registers is

stored in the Status Segment belonging to the calling

task. BR#0 is then loaded with the base descriptor

of the supervisor task's Segment Table, and PR#0 is

loaded with the name and virtual address of the

Supervisor's SVC Validity Check procedure. Finally,

the OK bits of the Associative Registers are set to

zero and the Protected Instruction flip-flop is turned

on.

2.2.11.1.2 Supervisor Return

ra
SVR o.o.i.i.i.i. ,!

The Supervisor Return is a protected instruction used

by the Supervisor to transfer control to a user task.

The new task which will obtain control is determined by

the contents of the Task Register.

BR#0 is loaded with the base descriptor of the new

task's Segment Table. The Pointer Registers are then

loaded from the Status Block belonging to the new task.

Finally the OK bits of the Associative Registers are set

to zero and the Protected Instruction flip-flop is reset

to zero.

2/25/71 Section 2.2.11.1.1 - l/l

2.2.11.1.3 Rename

m
<n-rn=>vnnfl>

S
-*"•*-"* AS

RNAM [0,0,0 ,0,1,1,1,01 <Operand> c <Operand>

The Rename instruction is a two operand, protected

instruction used "by the Supervisor to assign a given

segment a known name in the Dynamic Segment List of

the supervisor task's segment table. The first operand

points to the given base descriptor while the second

phrase indicates the available space pointer register

for the Supervisor's Dynamic Segment List. (Note:

this file must contain double word cells). The

instruction obtains a new cell from the available space

file, loads the base descriptor into this cell, and

pushes the halfword address of the new cell into the 0S.

2.2.11.1.1+ Sleep

SLEEP 0,1,1,1,1,1,0,0 <0perand>

The SLEEP instruction is a one operand, protected

instruction used by the Supervisor to put the TP on which

it is running into the idle state. The operand points

to a halfword cell whose contents indicate the number

of tenths of milliseconds the TP will remain idel before

recovering and executing the next instruction in sequence.

During the idel period the TP can only respond to external

activate instructions given by some other TP.

2.2.11.1.5 Activate TP

ACTP |0, 0,1,1, 0,1, T,P

This is a set of h protected instructions, one for each

Taxicrinic Processor. ACTP causes the TP executing the

instruction to request the Interrupt Unit to interrupt th<

designated TP.

2/25/71 Section 2.2.11.1.3 - l/l

2.2.11.1.6 Reserve Unit

RESU 0,0,0,1,1,0,0,0 <0perand> <0perand>

The Reserve Unit Instruction, RESU, is a protected,

two operand instruction used by the Supervisor to

reserve a particular unit , attached to one of 18

local exchanges on the Exchange Wet, to one of 6

processors. The first operand indicates a Pointer

Register containing a number from to 5 and indicates

the processor port involved in the reservation. The

second operand indicates a Pointer Register containing

a number from 1 to 18 and indicates the local exchange

involved in the reservation.

This instruction is necessary for those cases in which

a particular processor desires to use a particular unit

over a long period of time without interference from

other processors. This may be necessary because of

minimum response time requirements (e.g. in the case

of an AU) or because intermediate data pertinent only

to a particular task will be contained in the unit over

a long period of time (e.g. in the case of a PAU).

2/25/71 Section 2.2.11.1.6 - l/l

2.2.11.1.7 Load Task Register

LTR 0,0
,

1,1
,

1
,

0,1,0

This protected instruction pops the top halfword of

the Operand Stack and loads this name or the new Task

Name into the TP's Task Register.

2.2.11.1.8 Store Task Register

STR 0,0
,

1
,

1,1
, ,

1,1

This instruction pushes the Task Name contained in the

TP's Task Register in the top halfword of the Operand

Stack,

2/25/71 Section 2.2.11.1.7 - l/l

2.2.11.2 Interrupt Handling

Taxicrinic Processors must "be able to respond to two

types of interrupt conditions: local interrupts and distal interrupts.

The local interrupts concern conditions originating within the TP or

as a direct consequence of a TP command to a unit: AU, PAU or Core.

These interrupts are also called traps. Examples include loss of

significance in a floating point AU operation, an illegal plane address

in a PAU instruction, or a bounds overflow in addressing core.

Distal interrupts are caused by some external processor and

are routed to a TP through the interrupt unit. Examples of this type

of inter-processor communication include Active TP instructions,

I/O interrupts, etc.

Interrupts are processed in several stages. Upon detection of

an interrupt, it is the responsibility of the Taxicrinic Processor to

save the interrupt information and the current hardware status of the

machine in the Interrupt Storage Segment, and to transfer control to

the current task's Interrupt Handler Procedure. This first step is

entirely hardware implemented.

The Interrupt Handler Procedure, in turn, determines the type

of interrupt which has occurred on the basis of the information stored

in the Interrupt Storage Segment and transfers control to the appropriate

procedure which will process the interrupt. NOTE: This latter processing

procedure may be either a routine belonging to the present task or it

may be a Supervisor routine. Interrupts do not necessarily imply Super-

visor intervention.

The following two unprotected instructions allow tasks to

utilize the interrupt system. An extensive discussion of interrupt

handling will be found in Section h.

2/25/71 Section 2.2.11.2 - l/l

2.2.11.2.1 Set Interrupt Mask

Imm
SIM 0,1111110 <operand>

_i i t i i i

This instruction loads the Interrupt Mask Register

from the value field of the pointer register in-

dicated by the operand field. A one set into a

given position of the mask inhibits immediate

recognition of the corresponding interrupt.

To minimize cascading of interrupts, only the

Immediate Option is allowed. Execution of the

instruction also momentarily suppresses distal

interrupts.

2.2.11.2.2 Interrupt Return

INRT 10,0,1,1,1,0,0,0

The Interrupt Return instruction, INRT, has no

operands but uses PR#1 as an implied operand, pointing

to the Interrupt Storage Block containing the return

status information. The execution of this instruction

will cause the TP hardware to restore its status to

the state contained in this storage block and also

to return the storage block itself to the Interrupt

Storage Segment's available space list.

2/25/71 Section 2.2.11,2 - l/l

2.2.11.3 Input /Output

I/O instructions enable the Supervisor to control I/O

processing: typically an interrupt command is constructed and sent

by a TP under supervisory control to the IOP. This interrupt

command is then interpreted and executed in the IOP.

The following paragraphs describe the basic procedure for

executing an I/O process. Illustrated is the usage of some interrupt

commands with major emphasis given to the point-in-time relationships

of TP and IOP channel functions.

A Start I/O interrupt is used to initiate an I/O process.

To perform this operation, it is necessary for the programmer or

Supervisor to:

1) Establish an I/O program in the command area.

2) Establish a list of descriptors in that part of

the descriptor area assigned to the channel.

3) Load the channel name(s) and the address of the

first command of the program into the Start I/O

command word,

k) Issue the Start I/O Interrupt Command to IU, which

in turn will direct it to the correct IOP.

5) Test the Interrupt Acknowledgment, IA, from the

IOP for success or failure in initiating the new

I/O process.

An '0' in the first flag of the Interrupt Acknowledgment

indicates that the new I/O process has been successfully initiated.

A ' 1' indicates failure, and the remainder of the IA should be examined

to determine why the desired operation was not initiated.

Between the time a Start I/O is issued by the TP, and the time

the TP is released by the return of the Interrupt Acknowledgment, the IOP

performs many functions:

1 In this manual, an instruction is executed in a TP, a command is executed
in an IOP, and an order is executed by a peripheral device or device
controller.

2/2U/T1 Section 2.2.11.3 -1/2

1) It removes the Interrupt Command from the Exchange

Net.

2) It decodes the command.

3) In the case of Start I/O, it checks to see if the

requested channel(s) are able to start a new process.

If so, it puts a SUCCESS flag in the IA, and sends it

to the requesting TP via the Exchange Net and the

Interrupt Unit

.

If a Start I/O results in a SUCCESS condition, the channel

registers necessary for program execution are loaded from the command

area and the descriptor area. A successful program start does not

necessarily imply that the device will begin successfully. Actual

channel operation begins when the channel attempts to select the

device over the I/O interface by propagating the device address. This

operation and possible further data-transfer operations continue in-

dependently of the TP until either an END-flag descriptor occurs in

the I/O program, the TP issues a HALT interrupt, or an error occurs.

After the termination of an I/O process, the IOP requests an End Status

Interrupt of any available TP. This interrupt alerts the original

program of the end of its I/O process. The status of individual I/O

operations can be surveyed by checking the descriptor area. Then, if

conditions are propitious, new I/O process or processes can be started

on the freed channels.

An extensive discussion of input /output will be found in

Volume III of this manual.

2/2U/71 Section 2.2.11.3 - 2/2

2.2.11.3.1 Start I/O

a
SIO 0,1,0,0, ,0,1,01 <operand>

j i i i i i i

This protected instruction causes the IOP to initiate (or

attempt to initiate) an 1/0 data transfer. The operand phrase identifies the

full word "interrupt command" specifying the Start I/O operation. For

interpretation of this latter, see Section 3.1.3.1. The associated Interrupt

Acknowledgment and End Status Interrupt formats are discussed in Section 3.1.1.

2.2.11.3.2 Halt 1/0

HIO 01 0,0,0 11
<operand>

This protected instruction causes the IOP to terminate

execution of an 1/0 program. The operand phrase identifies the full

word "interrupt command" specifying the Halt 1/0 operation. For interpre-

tation of the latter, see Section 3. 1.3. 2. The associated Interrupt Acknowl-

edgment and End Status Interrupt formats are discussed in Section 3.1.1.

2.2.11.3.3 Load IOP Base Register
m

LIBR [0,1,0,0,0,0,0 ,
1

<operand:

This protected instruction loads the Segment Table Base

Register (STBR) of the IOP. All segments employed by the IOP in the

execution of its 8 independent programs, including the Command Segment

and the Descriptor Segment, are identified by Segment Table entries:

hence the central importance of the STBR.

The operand phrase identifies the full word "interrupt command"

specifying the LIBR operation. The associated Interrupt Acknowledgment is

discussed in Section 3.1.1.

2/24/71 Section 2.2.11.3.1 - l/l

2.2.11.U Coordination

2.2.11.1+.1 Increment and Check

INCK 01111101—i—i—i i i i i

<0perand>

The Increment and Check instruction is used to

update control double words of the specified format

given below:

Initial
Value Field

Increment
Value Field

Maximum
Value Field

Pointer
Value Field

Figure 2.2.11.*+ Control Double Word Format

The instruction accesses the control double word at

the operand address and then, without releasing the

Exchange Net, writes in a modification of the control

double word. This ensures that no other processor can

access the control double word until after the mod-

ification has been completed. The unmodified value

of the pointer value field is pushed into the OS.

The modification made is based on the contents

of the various fields in the control doubleword:

1) The pointer value field is incremented by the value

contained in the increment value field. If this new

value is not equal to the maximum value field, the

incremented value is stored in the pointer value

field.

2) If the incremented value is_ equal to the maximum

value field, the pointer value field is set equal to

the initial value field.

2/2U/T1 Section 2.2.11.U.1 - 1/2

3) In either case, the EQ is set according to

whether the incremented pointer value and

maximum value fields are equal or not (GT

and LT remain unchanged).

This instruction has several uses:

to implement loops if conditional sub-

traction is not desired;

to provide control for access to

"critical sections";

as a "status indicator" for circular

buffers. This is the procedure used to

control the interrupt storage during

interrupt;

to provide "semaphore" instructions for

parallel processing.

2/24/71 Section 2.2.11.4.1 - 2/2

2. 2. 11.1*. 2 Link

.
.ID

LINK 10,0,0,0,1,1,1,11 <Gperand> <0perand>

The LINK instruction is a two operand instruction

designed to perform dynamic segment linking. The

first operand points to a linkage table while the

second operand designates a PR which contains the

relative address of the desired external reference

within the linkage table and into which the proper

linked address will be loaded. If the linkage

table entry indicated by the first operand is not

loaded with a valid linked address, a linkage interrupt

will be performed.

2. 2. 11. k. 3 Who

M
WHO 0,1 1 1 1 1 1

The WHO instruction pushes the physical name (Note:

not task name) of the TP executing the instruction

as a halfword integer into the top of the Operand

Stack.

2/2U/T1 Section 2. 2. 11. 1+. 2 - l/l

2.2.11.5 Timing

Illiac III maintains two types of system clocks. The

accounting clock is a continuously running 2i+-hour clock which is

slaved to the 60 cycle power. The interval timers (one for each pro-

cessor) are resetable timers which are started when set and cause an

interrupt of the associated processor when the time expires.

The accounting clock is maintained by the interrupt unit and

may "be sampled by a Read Clock (RDCLK) instruction. When a read clock

instruction is executed, the interrupt unit is requested as if an

interrupt were to be processed. The interrupt processor will instead

return a word, called a system clock word , to the requesting terminal.

The accounting clock is a 2U-bit binary counter incremented

once every l/l20th of a second and cannot be reset (except manually

after maintenance periods). The clock will automatically recycle every

2h hours.

On-the-other-hand the interval timer assigned to a processor

is started whenever it is set to a non-zero value. The clock is a l6

bit binary counter decremented once every microsecond. When the count

reaches zero, a local interrupt is initiated in the governed processor..

11/17/70 Section 2.2.11.5 - 1/1

2.2.11.5.1 Read Clock

m
RDCLK 0,1,1,0,0,0,0,01

This instruction is used to read the 2U-hour accounting

clock in the Interrupt Unit. Any TP may read the

clock. The time is right-adjusted in a fullword and

pushed into the 0S. (Also see Sec. U.2.1 Read Clock

(RDCLK) of IU Manual, Report 386.)

2 . 2 . 11 . 5 . 2 Set Timer

STTIM ,1,1,0,0,0,1,0

This instruction is used to set the timer (internal

to the TP executing the instruction). The value is

popped (as a halfword) from the 0S of the TP executing

the instruction and loaded into the interval timer.

2.2.11.5.3 Read Timer

m
RDTIM 10,1,1,0,0,0,1,11

This instruction is used to read the interval timer,

The time as a halfword is pushed into the 0S of the

TP executing the instruction.

2/21+/71 Section 2.2.11.5.1 - l/]

2 . 3 Instructions Executed by Arithmetic Units

2.3.1 Arithmetic Data Formats

There are four types of arithmetic data used in Illiac III.

The attributes of these data are as follows:

Base = binary or decimal

Scale = fixed point or floating point

Mode = real

Precision = 16 bit integer, or

32 bit signed integer, or

56 bit signed fraction

and 7 bit characteristic, or

ik decimal digit signed integer.

These attributes have been combined to form four different

number types as described in the remainder of this section.

Although not illustrated in the previous figures, a flag

bit is associated with each byte of the four number types described.

Operands used in arithmetic operations may have flags set, and thus

the question arises as to the flag setting of an arithmetic result.

The flag bits of numbers produced by arithmetic operations will have

the following significance.

a) For unary operations (other than number type conversions)

the flags of the operand are unchanged.

b) For operations with two or more operands and no error

conditions , the flag setting of the result is the flag

setting of one of the operands.

c) For comparison instructions, the flags transmit the

result of the comparison from the Arithmetic Unit (AU)

to the Taxicrinic Processor (TP) via the Exchange Net

(XN).

d) For operations resulting in error conditions, the flags

transmit the type error condition from the AU to the TP

via the XN.

The significance of arithmetic flags is described further in

Sections 2.3.2 and 2.3.3.1.

6/30 /TO Section 2-3 - l/l

2.3.1.1 Short Fixed Point

Base = binary

Scale = fixed

Mode = real

Precision = 16 bit, unsigned integer if an address.

15 bit, signed integer otherwise.

A short fixed point number is a half word binary integer

which is treated as signed or unsigned depending upon its use. When

used as an address, a short fixed point number will always be considered

positive and since all 16 bits may be required to represent the magnitude,

no sign bit is explicitly specified.

Addition of addresses, as performed in the pointer modification
1 f>

operation ADDITION, is computed Mod (2) , in effect allows implicit

address subtraction. Subtraction of addresses, as performed in the

pointer modification operation CONDITIONAL SUBTPACTION, is performed

as a two's complement subtraction, Mod 2 . The results will always

be treated as a positive integer.

Numbers of the short fixed point type may also be used for

other then addresses in any of the 13 arithmetic operations. In this

case, the most significant (MS) bit will be treated as a sign bit and

a negative number will be represented in two's complement form with a

sign bit of 1. The range of these integers is

-32,768 to +32,767 and overflow will be checked

sign bit of 1. The range of these integers is -2 to +(2 -l) i.e.,

Sign or
MS digit,

2 bytes 'I

I I L.
Number Type Code =

Figure 2.3.1.1 Short Fixed Point Format

6/30/70 Section 2.3.1.1-1/1

2.3.1.2 Long Fixed Point

Base = binary

Scale = fixed

Mode = real

Precision = 31 bit, signed integer

A long fixed point number is a full-word signed integer.

Positive numbers are represented in true binary notation with a sign

bit of zero. Negative numbers are represented in two's complement
31 31

notation. The range of these integers is -2 to +(2 -l), i.e.,

-2,lUT,l+83,6U8 to +2,1^+7,^83,61+7 and overflow will be checked.

h bytes

' I ' I ' |

Sign _r
Number Type Code = 01

Figure 2.3.1.2 Long Fixed Point Format

6/30/70 Section 2.3.1.2 -, 1/1

2.3.1.3 Floating Point

Base = binary

Scale = floating

Mode = real

Precision = 56 bit, signed fraction

7 bit characteristic

Floating point numbers are a double word in length, sub-

divided as indicated below:

Sign of FractioiL

Characteristic —
Radix Point

r

8 bytes

v
Fraction

Number Type Code = 10

Figure 2.3.1.3 Floating Point Format

The first bit is the sign of the fraction. The fraction is

always in true representation, i.e., the fraction of negative numbers is

carried in positive form. The fraction is expressed in base l6,

hexadecimal form and therefore consists of lU hexadecimal digits. In

hexadecimal representation, the characteristic represents the power to

which l6 must be raised to express the true magnitude of the number.

The 7 bits of the characteristic are treated as an excess 6k number

with range -6k to +63 corresponding to the binary values through 127,

respectively. The characteristic zero, for example, is represented as

1000000.

6/30/70 Section 2.3.1.3 - 1/2

A floating point number in main store or produced as the

result of a floating point arithmetic operation will always be normalized.

For the hexadecimal representation, this means that the fraction will

have a non-zero, high-order hexadecimal digit. This type normalization

permits the three high order bits of a normalized number to be zero.

Normalization is not programmable.

Under the normalization described above, the range covered

by this notation is l6 to (l - l6) x 16 , which is approximately
-79 75

5.4 x 10 to 7-2 x 10 . The binary representation of these maximum

and minimum values are shown in Table 1.2.3.

A floating point zero will be represented as a number with

the most negative, zero fraction, and positive sign as indicated in the

figure below. All zero results will be returned from the AU in this form.

DESCRIPTION NUMBER POWER OF 16 CHAR FRACTION

Maximum
positive
number

1.0

0.5

Minimum
positive
number

True zero

+7.2 x 10
75 = (1-16

1
) x l6

b3
1111111

1.0 x 10° = 1/16 x 16
1

0.5 x 10° = 1/2 x 16°

5.UxlO-79 =l6-1 xl6"
6U

+0.0 = x 16
-6k

1000001

1000000

0000000

0000000

All l's

00010.. .0

10000.. .0

000100.. .0

All 0's

Table 2.3.1.3 Examples of Floating Point Representation

6/30/70 Section 2.3.1.3 - 2/2

2.3.1.1+ Decimal

Base = decimal

Scale = fixed

Mode = real

Precision = ik digit, signed integer

The alphanumeric representation of decimal digits uses the

USASCII code extended to eight hits. The high order k bits are designated

the zone and are 0101 for decimal digits. The low order h bits are the

binary encoding 0000 - 1001 of the digits 0-9 respectively.

1 byte

-

1 -° .1.

Zone BCD

Figure 2. 3.1. UA USASCII Digit Format

A plus sign (+) is represented as 1011 and a minus sign (-)

as 1101 in the right half of the left-most byte of the number, i.e. in

the half byte designated "S" in Figure 2.3.1.U/2.*

*Definition of USASCII-8 taken from IBM System/360 Principles of Operation

File No. S360-01, Form A22-6821-T , p. 150.1.

6/30/70 Section 2.3.1.U - 1/2

Decimal operands, i.e., decimal numbers to be sent to an

arithmetic unit , must be in a packed or unzoned format with two digits

rather than one digit per byte. A decimal number consists of a double

word subdivided into BCD digits and a h bit sign as shown below:

I*

i i i i i

X S

X = Not used

S = Sign

8 bytes
~H

_i ' <

Two BCD digits per byte

+ = 1011

- = 1101

Number Type Code = 11

Figure 2.3.1. 1+/2 Decimal Number Format

Alphanumeric, or zoned format, may be converted to the

above format by use of the PACK instruction of the TP.

The decimal number zero may be either plus or minus, but in

either case an Equal Zero (EQ) indicator will be turned on when it is

tested with a Test Algebraic (TA) instruction.

6/30/70 Section 2.3.1.H - 2/2

. 2.3.2 n Arithmetic Instructions

This section describes the arithmetic instructions. The arith-

metic instructions which are executed in a Taxicrinic Processor are in-

cluded in Section 2.2.8.. An asterisk(*) by a name denotes an order which

will not be available in the initial version of the Illiac III Arithmetic

Units. Provisions are being made however for their eventual incorporation,

either by additional hardware or as programmed macro-instructions .

' The

following conventions are used in this section.

a. "Fixed" includes both short and long fixed point format

unless otherwise noted.

b. A indicates the location of the Operand Stack Pointer (0SP).

c. The abbreviations used for Indicators are as follows:

0V = Overflow

LS = Loss of Significance

GT = Greater Than

EQ = Equal

LT = Less Than

FM = Flag Match

UN = Underflow

ID - Invalid Decimal Data

The exceptional condition indicators are described in detail in

Section 2.3.3.1.

d. The flags of results of unary operations other than number

type conversions are unchanged.

e. The "flag" convention for binary and multi-cycle arithmetic

is of the form:

F(W) - F('.V)

where F - "the flags of"

X - the operand next to the top operand

¥ ~ the result produced

«- = "replaced by"

1/1/10 Section 2.3.2 - 1/5

f. "Flag" convention for the conversion instructions is of

the form:

F' . .
< F ,

i- j m-n

where the flags within a number type are numbered consecu-

tively 0, 1, ..., 7 from left to right.

F = the mth through nth flag of the original, unconverted
m-n

number.

F'._. = the ith through jth flag of the resultant converted

number.

*• "replaced by"

g. Note that when an arithmetic computational error occurs,

the flag setting of the result is not a copy of the flags

of the operand, but is rather an indication of the type

error which has occurred. (See Section 2.3.3.1).

Arithmetic Indicators include two types of indicators:

comparison indicators and computational condition indicators .

Since all except fixed point comparisons (CPRA.) are executed

in an arithmetic unit, provisions have been included to return the

results of the comparison (GT, LT, EQ, FM) to the Taxicrinic Processor.

This transfer is accomplished by returning a floating point zero with

the flags set to indicate the result of the comparison.

1/1/10 Section 2.3.2 - 2/5

When this pseudo-result , zero, is received by the Taxicrinic

Processor, the flags indicating the results of the comparison set

indicator flipflops which may be tested by a subsequent instruction.

For fixed point comparisons and test algebraic (TA) , both of which are

executed solely in a taxicrinic processor, the indicator flipflops are

set directly.

The comparison indicators are designated as follows:

EQ = Equal Zero

GT = Greater Than

LT = Less Than

FM = Flags Match

The flags of a result which set these indicators are called

comparison indicator flags, and are described in Table 2.3.2/1.

The comparison indicator flags are assigned as follows:

Flag of Byte Number

GT 5

EQ 6

LT 7

FM 8

Byte numbering is to 7, left to right.

Table 2.3.2/2 is a summary of the arithmetic unit order code.

7/7/70 Section 2.3.2 - 3/5

Table 2.3.2/1 Comparison Indicators

Indicator And
Description

Orders In Which *Pseudo Result
Indicator May Occur Returned From AU

TA None

GT = 1

CPRA
,

ZER0 "

I

TA None
EQ = 1

CPRA ZERjA

TA None

LT = 1

CPRA ZER0

GT - Greater Than

A > G

A > E

EQ - Equal

A --

A --- E

v: - Less Than

A <

A < 6

FM - Flags Match

Flags of A - 0, FM = 1

Flags of A / 0, FM =

Flags of A -- Flags of B, FM.

rlags of A / Flags of B, FM

TA

opfa

None

FM = 1

ZER0

*An arithmetic unit is used only for Decimal and Floating CPRA. TA is

executed in the taxicrinic processor for all number types. In all cases
the operands in the fi'3 are not changed.

1/1/10 Section 2.3.2 - U/5

Table 2.3*2/2 ILLIAC III Arithmetic Unit Order Code

QBCEE. NUMBER TYPE

Instruction Short Long
Mnemonic Variant Fixed Fixed Floating Decimal

(None) 0000 ft « ft ft

CVL 0001 TP « 10 11

CVF 0010 00 01 « 11

CVD 0011 00 01 10 ft

NEG 0100 TP TP TP TP

ABS 0101 TP TP TP TP

MNS 0110 TP TP TP TP

TA 0111 TP TP TP TP

ADD 1000 TP TP 10 ft

(None) 1001 ft ft ft ft

SUB 1010 TP TP 10 ft

CPRA 1011 TP TP 10 ft

MPY 1100 00 01 10 ft

POLY 1101 ft ft 10 ft

DIV 1110 00 01 10 ft

(None)# 1111 ft ft ft ft

*Not defined. No operation will take place.

TP - This operation performed in Taxicrinic Processor,

w - IV = 1111 is used to indicate the final coefficient in a POLY order.

7/7/70 Section 2.3.2 - 5/5

2.3.2.1 Add

ADD

Fixed:

Floating:

^Decimal:

m
1,011,0 ,0,0|N,Tl

Add the top two numbers in the 0S , decrement the

0SP by cell size (of NT) and load the sum into the new

top of stack position.

Before ADD A B

After ADD I A + B 1

A
Flags: F(A + B) *- F(A)

Indicators: 0V (Executed in TP)

Indicators: 0V, UN, LS

Indicators: 0V, ID

2.3.2.2 Subtract

SUB

Fixed:

Floating:

*Decimal:

m
ii,oii,o,i,oiw7n

Subtract the top number in 0S from the next-to-top

number, decrement the 0SP by cell size (of NT) and

place the difference in the new top of stack position.

Before SUB I
A "B"

After SUB 1 A - B I

A
Flags: F(A - B) «- F(A)

Indicators: 0V (Executed in TP)

Indicators: 0V, UN, LS

Indicators: 0V, ID

1/1/10 Section 2.3.2.2 - l/l

2.3.2.3 Multiply

ll.Qll.l.O.OlN.TMPY

Fixed:

Floating

:

^Decimal:

Multiply the top number (multiplicand) in the 0S

"by the next-to-top number (multiplier).

Before MPY A B

The most significant part of the product (A • B)

replaces the multiplier; the least significant part

(A • B) replaces the multiplicand. Cell size of result

is twice CS of operands.

After MPY 1
U-B)M |

(A-B) L

F[(A B)
M] + F[A], F[A B)

L] =Flags

:

Indicators: 0V

The normalized result replaces the multiplicand, and

the 0SP is decremented by CS.

After MPY |A • B |

A
Flags: F[A • B] «- F[A]

Indicators: 0V, UN .

The unnormalized result replaces the multiplicand, and

the 0SP is decremented by CS. As both operands and

the result are double words , the sum of the number of

significant digits in the operands must be <_ ik to

prevent overflow.

After MPY |A B
A

Flags: F[A • B] «- F[A]

Indicators: 0V , ID

*A double length result is returned for fixed multiply so as to permit
fixed point numbers to be interpreted as either a fraction or integer.

Overflow of the single length boundary is checked and a flag is set

if it occurs; however, a Bogus Result interrupt is not generated.

1/1/10 Section 2.3.2.3 - l/l

2.3.2.1+ Divide

DIV

Fixed:

Floating:

Decimal:

1.0 1 ,1, 1, N.T

Divide the next-to-top number (dividend) by the

top number (divisor) in the 0S.

Before DIV 1
A B

The quotient replaces the dividend and the remainder

replaces the divisor.

After DIV |
A/B

| Remain |

Flags: F(A/B) «- F(A) , F(Remainder) =

Indicators : 0V

The quotient replaces the divident , and the 0SP is

decremented by CS.

~a7b~After DIV

Flags: F(A/B) * F(A) , F(Remainder) =

Indicators: 0V, UN

The quotient replaces the dividend and the remainder

replaces the divisor.

T7FAfter DIV Remain

Flags: F(A/B) * F(A) , F(Remainder) =

Indicators: 0V, ID

Remainder has same sign as dividend (A-0p) except zero is always positive.

1/1/10 Section 2.3.2.U - 1/1

2.3.2.5 Compare Algebraically

CPRA 1.

m
10 11 NTJ

Compare algebraically the next-to-top number in

0S with the top number in the 0S. Set GT, LT, EQ

Indicators. Compare flags for match or no match

and set appropriate indicator.

Decrement 0SP by CS.

If A - B > 0, set GT

If A - B = 0, set EQ

If A - B < 0, set LT

If flags of A match flags of B, set FM

Before CPRA A B

After CPRA A

Flags : Unchanged

Fixed: Indicators: GT , LT, EQ, FM (Executed in TP)

Floating: Indicators: GT, LT,, EQ, FM,

^Decimal: Indicators: GT, LT , EQ, FM, ID.

7/7/70 Section 2.3.2.5 - 1/1

2.3.2.6 Convert to Decimal ryi

~olo .o.i .iIn.t!CVD

Short Fixed:

Long Fixed:

Floating:

Decimal:

Convert the specified number on top of 0S into a

packed (2 BCD/byte) double word decimal number.

Flags: F» +F

F' =
2-7

Indicators

Flags : F

'

: None

* F
0-3 0-3

FV7
= °

Indicators: None

Flags: F'
Q_ T

+

Indicators: 0V

N0P

0-7

2.3.2.7 Convert to Floating Point

CVF

Short Fixed:

1 , , 1 , [N ,T

E
Convert the specified number at top of 0S into a

normalized floating point number.

Flags: P' *FW
F '

2-7
= °

Indicators: None

Long Fixed: Flags: F'
Q_ 3

-» F

FV 7
= °

Indicators: None

Floating: N0P

Decimal: Flags: F' _ T
«-F

Indicators: ID

0-3

0-7

7/7/70 Section 2.3.2.7 - 1/1

2.3.2.8 Convert to Long Fixed Point

EDCVL I l.OlO.O.O .llN.Tl

Short Fixed:

Long Fixed:

Floating:

Decimal:

Convert the specified number at top of 0S into a long

fixed point number.

Flags: F' . « F (Executed in the TP)

F' =0
2-3

Indicators

N0P

Flags: F»

None

-*- F
0-3 0-3

Fi „ are lost

Indicators: V

Same as above

Indicators: 0V, ID

1/1/10 Section 2.3.2.8 - l/l

2.3.2.9 Polynomial Evaluation

POLY 1,0|1,1,0 ,1| N.Tl
E3

The polynomial of the form

n-1n
_,ax + a n xn n-1

+ ...a x + a is evaluated.

To specify the polynomial, the coefficients a

through a are pushed into the 0S in that order.

The value of x is then pushed in followed "by the

degree n, a short fixed point number.

Before POLY "0
_r

n-1
x

After POLY Ans.
A

Flags: F(Result) * F(X)

*Fixed: Indicators: 0V,

Floating: Indicators: 0V, UN, LS

^Decimal: Indicators: 0V, LS , ID

7/T/T0 Section 2.3.2.9 - 1/1

2.3.3 Exceptional Conditions for Arithmetic Instructions

2.3.3.1 General

When a computational condition such as an overflow occurs

in an arithmetic unit, this information must be returned to the taxi-

crinic processor. As with comparison operations (Section 2.3.2), the

flags of a result are used to return this condition information, and

to set indicator flipflops which may be tested with subsequent instruc-

tions. The bogus result produced is returned to the Taxicrinic Pro-

cessor, not as a copy of the flags of an operand, but rather as an

indication of the condition which has occurred. The fact that an error

has occurred is included with the Exchange Net transmission in the

control byte.

The bogus result with the appropriate computational condition

flag(s) set is pushed into the 0S as if it were a correct result. An

interrupt then takes place except for an overflow for fixed point

multiply. (See Section 2.3.2.3).

The following parts in this section describe the Illiac III

computational condition indicators and illustrate the disposition of

bogus results. The assignment of computational condition flags is

illustrated for the various number types in Figure 2.3.3.1/1. The

comparison indicator flags (Section 2.3.2) are also shown for the sake

of completeness.

For the reader familiar with PL/1, Table 2.3.3.1/2 describes

the analogy between the computational conditions of PL/1* and those

implemented in the hardware of Illiac III. Although there is not a

one-to-one correspondence between the two versions , both yield approxi-

mately the same information if the instruction and number type are known.

"IBM Operating System/360 , PL/l - Language Specifications,"
File No. S360-29, Form 028-6571-^, p. 162.

1/1/10 Section 2.3.3.1 - 1/3

Floating

LS UN 0V ID GT EQ LT FM

D D D D D D D D

Decimal

LS

D D

In id gt eq lt

] D D
jT FM

D tf

Long
Fixed

* * 0V ID

D Q Q

Short
Fixed

0V ID

D D

* = Not Used in this Number Type

Figure 2.3.3.1/1 Flag Bit Designation for Arithmetic Indicators

1/1/10 Section 2.3-3.1 - 2/3

Table 2.3.3.1/2. Correspondence between Computational Conditions

of PL/l and Those of Illiac III

ILLIAC III

PL/

1

Instruction
Variant

Number
Type

Computational
Condition Indicator

CONVERSION CVF or CVL Decimal Invalid Decimal Data

CVD or CVL Floating Overflow

CVL Decimal Overflow

FIXEDOVERFLOW ADD, SUB,

MPY, DIV,
ABS,
POLY

Long or
Short Fixed
or Decimal

Overflow

OVERFLOW ADD, SUB,

MPY, DIV, POLY,
Floating Overflow

SIZE

UNDERFLOW

ZERODIVIDE

No hardware imple-
mentation.

ADD, SUB, MPY Floating Underflow
DIV, POLY

DIV Any Overflow

1/1/10 Section 2.3.3.1 - 3/3

2.3.3.2 Overflow (OV)

Table 2.3.3.2 - Overflow (OV)

Order In Which

Condition May Occur

Description

of Condition

Result In

Stack

ADD, SUB

S. Fixed

(also in CPRA)

Magnitude of result

exceeds (2 -l).

Low order 16 bits

of the result.

L. Fixed

(also in CPRA)

Magnitude of result

31
exceeds (2 -l).

Low order 32 bits

of the result.

Floating The exponent of the

normalized result exceeds

63 and the result frac-

tion is not zero.

Fraction is that computed

and correctly normalized.

Sign of fraction is cor-

rect. Exponent = -+63

.

Decimal Magnitude of result

exceeds 99999999999999

(lU, 9's).

Low order ik digits of

the result.

MPY, POLY

S. Fixed Magnitude of result
15

exceeds (2 -l).

Full-word correct result

with OV flag set.

1/1/10. Section 2.3-3.2 - 1/3

Order in Which
Condition May Occur Description of Condition Result in Stack

/7/70

In Fixed Magnitude of result

exceeds (2
J

-l).

Double word (integer)

correct result with

OV flag set.

Floating The exponent of the

normalized result

exceeds 63 and the

result fraction is

not zero.

Fraction is that- com-

puted and correctly

normalized. Sign of

fraction is correct.

Exponent = +63.

Decimal Magnitude of result

exceeds Ik, 9' s

,

Low order lU digits

of the result.

1)1 v

S. Fixed

L. Fixed

Division by zero. Largest number represen-

table . Sign of result is

sign of dividend. Re-

mainder is 0.

floating Division by zero. Fraction and exponent are

all l's.' Sign of frac-

tion is the sign of the

dividend

.

jtecimal Division by zero. Largest number

representable.

Section 2.3-3.2 - 2/3

Table 2.3.3.2 - Overflow (OV) (Continued)

Order in Which
Condition May Occur Description of Condition Result in Stack

ABS, NEG

S. Fixed Attempt to negate the The integer +1.

most negative number

representable.

CVD

Floating The magnitude of the Result is the converted *

converted number ex- number with missing high

ceeds the range of the order digits which have

new number type

.

overflowed.

CVL

Floating The magnitude of the Result is the converted

Decimal converted number ex- number with missing high

ceeds the range of the order bits which have

new number type

.

overflowed.

* This is true only if Exponent of Floating Operand is <_ lU. Otherwise

"double" overflow occurs and error is compounded.

7/7/70 Section 2.3.3.2 3/3

2.3.3.3 Underflow (UN)

Table 2.3.3.3 - Underflow (UN)

Order In Which Description Result in

Condition May Occur of Condition Stack

ADD The exponent of the Fraction is that com-

SUB normalized result is puted and correctly

MPY less than -6k and the normalized. Sign of

DIV result fraction is fraction is correct.

POLY not zero. Exponent is -6k.

Floating Only-

7/1/70 Section 2.3.3.3 - 1/1

2.3.3.1* Invalid Decimal Data (ID)

Table 2.3.3. 1* - Invalid Decimal Data (ID)

Order In Which Description Result in

Condition May Occur of Condition Stack

Any Decimal Order A sign or digit code Result is the contents of

Except NEG, ABS, of an operand is the AU accumulator when

MNS, TA. incorrect

.

the decoding error was

detected. No ID check is

made for unary operations

except CVF and CVL.

7/7/70 Section 2.3-3. h - l/l

2.3.3.5 Loss of Significance (LS)

Table 2.3.3.5 - Loss of Significance (LS)

Order In Which Description Result in

Condition May Occur of Condition Stack

ADD Fraction of result is True zero with LS

SUB 0. Exponent of result flag set.

POLY £ -6k. For example

-

Floating Only- when two equal numbers

are subtracted.

7/7/70 Section 2.3.3-5 - 1/1

2.4 Instructions Executed "by the Pattern Articulation Unit

The PAU instructions have been divided into classes defined

by the number of explicit operand planes required for the execution of

a given instruction. All instructions pertaining to loading and un-

loading the Iterative Array (i.e. border instructions) have been

included in a separate section.

2.4.1 Conventions

2.4.1.1 Planes and Borders

The word plane as used to describe PAU instructions, refers

exclusively to the 32 x 32 array. Any manipulations of the borders

will be explicitly stated. The symbols S , ..., S are used to refer

to one or more elements of the set M, PO, ..., P55 of planes.

If any restrictions on plane addresses exist they will be

stated explicitly.

Although the M-plane (and its borders) is used by the PAU as

a buffer and scratch plane in the execution of many instructions, the

programmer may use the M-plane as an operand plane. It has been explicitly

stated whether the M-plane and/or its borders are altered during the

execution of an instruction.

The numbering convention shown in Figure 2.4.1/1 is used

explicitly by the PAU control and is used in dumps and thresholding

operations. The PAU treats the plane address as a mod 64 number with

-1 (the M-plane) represented as 111111. The ten high order bits of the

(halfword) plane address are ignored.

2.4.1.2 Direction Numbers

Direction numbers are used to specify the relative location

of neighbors of a given cell. Thus the direction number assigned to a

cell is dependent upon the current topology of the array. (See Figure

2.4.1/2).

7/13/70 Section 2.4 - 1/3

Transfer Memory (

Iterative Arr

Figure 2.1+.1/1 PAU Plane Numbering Convention

7/13/70 Section 2.U - 2/3

X

10

11

13 12

Rectangular Array

x

Hexagonal Array-

Figure 2.1+.1/2 Direction Numbers as Functions of the
Topologies of the Iterative Array

8/11/70 Section 2.U - 3/3

'2.U.1.3 Indicators

2. h, 1.3.1 Exceptional Conditions

The following indicators are used by the PAU to signal the

occurrence of an error during the execution of a PAU instruction.

Indicator

Parity (UPE)

Malfunction (UM)

TM OFF (TMO)

Invalid Plane Address (IPA)

Count Overflow (CNTOV)

Coordinate Overflow (COKDOV)

TM-TM Request (TMTMRQ)

Invalid Op Code (IOC)

Instruction Not Present (INP)

Invalid Direction List (IDL)

BOOLE Flag 1 (BFl)

BOOLE Flag 2 (BF2)

BOOLE Flag 3 (BF3)

BOOLE Flag k (BFil)

Cause for Occurrence

Incorrect parity detected

Detected hardware error

Transfer memory accessed while
off-line

1) Plane address (6 least sig-
nificant bits) not in range - 1

to 55

2) Address >7 specified for
instructions valid only in IA

Count greater than 102*+ specified

Coordinate >U095 specified in

plot instructions

Invalid specification for ' COPYC

Attempted execution of an in-

struction which is not a PAU
instruction or illegal instruction
after interrupt

Attempted execution of an
unas signed or unavailable PAU
instruction

Neighbors 7 and 8 specified in
HEX mode

No variables in elementary function

Variables defined as both true
and complemented

Forb idden OP (s) code

Insufficient Stack Depth

7/13/70 Section 2.4.1.3 - l/l

2.U.1.3.2 Indicator Halfword

Upon the recognition of an exceptional condition the PAU will

return a BOGUS RESULT indicator to the calling TP as well as placing

a halfword of indicators on the XN OUTBUS. The TP will store these

indicators in the interrupt segment. This is the only information

returned to the TP {i.e. no bogus data will he returned).

The OUTBUS assignments are:

Bit: 10 UPE

11 UM

12 TMO

13 IPA

11+ CNTOV

15 C0RD0V

16 TMTMRQ

IT

18 -

20 INP

21 IOC

22 IDL

23 BF1

21+ BF2

25 BF3

26 BFl+

27

28 •^

7/13/70 Section 2.1+.1.3.2 - l/l

2.4.2 Zero-Plane Instructions

The instructions in this section have no planar operands.

They are used to set up conditions of operation for the Iterative Array.

The last two instructions (RESUME and RESTART) are privileged

instructions initiated by the supervisor after the PAU has been in-

terrupted. One of these two instructions must be executed after the

interrupt is serviced or the IOC flag will be set.

7/10/70 Section 2.4.2 - l/l

2.4.2.1 Topology

TOPOLOGY
LH

l.llO, 1,1,1 ,s.c|

This is a declarative instruction which sets the

topology of interconnection of the PAU. The top-

ology remains the same until explicitly changed with

another Topology instruction.

The variants are Rectangular/Hexagonal and Planar/

Toroidal. Rectangular/Hexagonal refers to the two

types of cellular array which can be manipulated.

Rectangular means the 4-sided (8-nearest neighbors)

configuration; Hexagonal means the 6-sided (6-nearest

neighbors) connection. Planar/Toroidal refers to

connections which affect the Shift order explicitly

and other orders implicitly.

If Planar is specified, bits shifted out of the

borders are lost and zeros are entered at the opposite

edge.

If Toroidal is specified, bits which are shifted

out of the borders "wrap around" and are entered at

the opposite edge.

The default options are Rectangular and Planar.

Topology

Rect angular/Planar

1 Rectangular/Toroidal

1 Hexagonal/Planar

1 1 Hexagonal/Toroidal

Indicators: Parity

7/10/70 Section 2.U.2.1 - l/l

2.U.2.2 Set Origin

SET0RG IXllO. n.n.n.T.i
<Operand>

Set Iterative Array Origin: Set the origin (0,0) of the

Iterative Array to the value specified by the (X,Y) coordinate in the

same format as used in the scanner coordinate mode. The coordinates

must lie in the range <_ XORG, YQRG _< 1*095. (The three low order

hits of the 15 bit coordinates (the SMV vernier bits) are ignored.) The

origin remains the same until explicitly changed by another SET0RG

command.

Indicators : Parity

7/10/70 Section 2.U.2.2 - 1/1

2.U. 2. 3 Resume

S
RESUME 1100000 1

j—i—i i i i

Resume PAU operation: This instruction signals the PAU

to resume normal operation after an interrupt. The PAU will

complete execution of the interrupted instruction or, if already

completed, will accept a new instruction. All status indicators

retain the state they were in at interruption. This is a protected

instruction.

Indicators: Parity

2/22/71 Section 2.1*. 2. 3 - 1/1

2.U.2.U . Restart

m
RESTART ll

f

l]Q, 0,0, 0,0,0|

Restart PAU operation: This instruction signals the

PAU to reset all status indicators to the default (initialized)

condition and to accept a :iew instruction. This is a protected

instruction.

Indicators: Parity

2/22/71 Section 2.U.2.U - l/l

2.U.3 One-Plane Instructions

The one-plane instructions may be divided into two types

.

The first type uses only the Iterative Array for execution. The

second type uses both the Iterative Array and the Transfer Memory.

Instructions of this latter type are of the LIST and PLOT variety.

Note that in the explanations of the LIST and PLOT type

instructions that the origin of the Iterative Array is given as

(x,y) = (0,0). The programmer may assign a virtual origin by means

of the zero-plane instruction SETORG. The coordinates then PLOTTED

or LISTED will be the virtual coordinates i.e X, Y = XORG + x,

YORG + y where XORG, YORG is defined by a SETORG, and x, y (0<_x,y<_3l)

are the relative Iterative Array coordinates.

Furthermore , in the PLOT instructions a coordinate out of

the range of the virtual Iterative Array will be ignored unless it is

greater than U095 in which case an error is indicated.

8/11/70 Section 2.U.3 - 1/1

2.4.3.1 Data Formats

2.4.3.1.1 Coordinate Mode

The coordinate mode used by the PAU is similar to that

put out by the scanner. The format is as follows:

Ytll^Cl.l] A[l,l] ... X[l,m] A[l,m]

Y[2]
1
X[2,1] A[2,l] ... X[2,n] A[2,n]

where

Y[K]
1
X[K,1] A[K,1] ... X[K,qJ A[K,q]

Y[K+l] (both flags l)

X,Y - Two bytes each, <_ X <_ 4095, <_ Y <_ 4095 .

Right justified

A - Attribute - either bits, 8 bits (l byte right
justified in a halfword) , or 48 bits (6 bytes)

2.4.3.1.2 Incremental Code .—

.

Ax ± Ay 8

012345 6 7

Bit Sign of x displacement

Bits 1-3 Magnitude of x displacement (0 <_ x <_ 7)

Bit 4 Sign of y displacement

Bits 5-7 Magnitude of y displacement (0 <_ y <_ 7)

8/11/70 Section 2.4.3.1 - 1/1

2.4.3.2 Clearp

CLEARP
E

1 1 110 0,0 <ID Byte> Operand S >

Clear plane and border: Set the contents of plane

S and/or its borders , as specified by the Identi-

fication byte, to zero. S must be in the IA.

NE

ID Byte P
,

E SE S SW W NWH
ii i i , i i i i

where P = Plane

E = East Border

SE = Southeast Corner

S = South Border

SW = Southwest Corner

W = West Border

NW = Northwest Corner

N = North Border

NE = Northeast Corner

Indicators: Parity, Invalid Plane Address

8/11/70 Section 2.U.3.2 - l/l

2.U.3.3 Setp

SETP 1, ll 1, 1,0, 0,0, ll <ID Byte> <0perand S >

Set plane and border: Set the contents of plane

S and/or its borders, as specified by the

Identification byte, to one. S must be in the IA.

ID Byte

NE

P E SE S SW W NWN
i i i i i i i

where P = Plane

E = East Border

SE = Southeast Corner

S = South Border

SW = Southwest Corner

W = West Border

NW = Northwest Corner

N = North Border

NE = Northeast Corner

Indicators: Parity, Invalid Plane Address

8/10/70 Section 2.U.3.3 - 1/1

2.U.3.U Testp
m

TESTP
I 1.111.0 X .0 PT1 Operand S^

Test plane: Plane S is copied into the M-plane.

The M-plane is then tested for zero. If the M-plane

is identically zero, the EQ indicator in the TP will

be turned on (set to one). If the M-plane is not

identically zero, the EQ indicator will be turned off

(set to zero)

.

The previous contents of the M-plane will be

destroyed.

Indicators: Parity, Invalid Plane Address.

7/13/70 Section 2.U.3.U - 1/1

2.U.3.5 Tesfb

TESTB
Q

111 1 II
1 j

<Operand S >

Test Borders

for zero. S
1

The borders of the plane S are tested

must be in the IA.

If all borders are identically zero, the EQ indicator

in the TP will be turned on (set to one).

If all borders are not identically zero, the EQ

indicator will be turned off (set to zero). Also one

byte (right-justified in a half-word) in the same format

as the Identification Byte indicating (by setting appro-

priate bits to '1') which borders are non-zero will be

pushed into the Operand Stack.

NE

ID Byte SE S
,

SW
,
W NW N

where P = Plane

E = East Border

SE = Southeast Corner

S = South Border

SW = Southwest Corner

W = West Border

NW = Northwest Corner

N = North Border

NE = Northeast Corner

Indicators: Parity, Invalid Plane Address

7/13/70 Section 2.U.3-5 - 1/1

2.U. 3. 6 Replicate

REPLICATE

Th

m
l .1 1 l.a .o. i .o .o

<0perand S >

e contents of plane S (including borders) is

duplicated in each plane of the IA. S must be in

the IA .

Indicators: Parity, Invalid Plane Address.

7/13/70 Section 2.U.3.6 - l/l

2.4.3-7 Shift ._,

CD

SHIFT |i:i|l.Q.l.l.oin
<0Perand S!> Operand D>

Shift plane: Shift plane S and its "borders as

specified by the displacement byte, D.

Displacement Byte

1*1 *, 1*1
, y^J80123^567

Bit Sign of x displacement (+_)

Bits 1-3 Magnitude of x displacement (0 <_ x _£ 7)

Bit k Sign of y displacement (+)

Bits 5-7 Magnitude of y displacement (0 <_ y <_ 7)

S must be in the IA and may not be in the M-plane.

The previous contents of the M-plane will be destroyed,

Indicators: Parity, Invlaid Plane Address.

7/13/70 Section 2.4.3-7 - 1/1

2.4.3.8 Tally

TALLY hi
I—I <Operand S > <Operand DL>

Tally ones up: Set P(i) = P(S)&P(i-l)
|

P(i) , <_ i <_ 7.

Effectively P(-l)=l.

S is copied into the M-plane. The value of the M-plane

replaces the first zero over every ascending vertical

seqeunce of ones. (See examples given below.) The

M-plane will contain S after execution. The contents

of P0-P7 may be changed. No check for overflow will

be made . The direction list, DL, provides for tallying

nearest neighbors without shifting. Sequential TALLY'S

will be performed on those nearest neighbors specified

in the direction list. A direction list consists of

one byte in the following format.

I I I L_l l^_l

12 3 4 5 6 7

Where the appropriate bit set to one indicates that

neighbor is to be used in the execution of the

instruction.

Indicators: Parity, Invalid Plane Address, Invalid

Direction List.

7/30/70 Section 2.4.3.8 - 1/2

Example 1:

M 1

PT

P6

P5
TALLY

P'l s*
P3

P2

PI

PO

TALLY

Example 2

:

M 1

PT

P6

P5 1
TALLY

^>

Pl+
s

P3

P2

PI 1

PO n

1

1

1
TALLY

>

1

1

1

7/30/70 Section 2.U.3. 8 - 2/2

2.U.3.9 Tallyho~^ Q
i

-a <Operand S > <Operand DL>
1 ill 111 d * 1 *TALLYHO

Tally zeroes down: Set P(i) = ~l[P(S)&~iP(i+l)]&P(i)

,

< i <_ 7.

Effectively P(8) = 0.

S is copied into the M-plane. The complement of

the value of the M-plane replaces the first one under

every descending vertical sequence of zeroes. (See

examples given below).

The M-plane will contain S after execution. The

contents of P0-P7 may he changed. No check for under-

flow will he made .

The direction list, DL, provides for tallying nearest

neighbors without shifting. Sequential TALLYH$'s

will be performed on those nearest neighbors specified

in the direction list. A direction list consists of

one byte in the following format

.

J ! I U
o 123^567

Where the appropriate bit set to one indicates that

neighbor is to be used in the execution of the instruction.

Indicators: Parity, Invalid Plane Address, Invalid

Direction List.

7/30/70 Section 2.U.3-9 - 1/2

Example 1:

M 1

PT

P6 1

P5 1 TALLY HO

Pk 1
>

P3 1

P2 1

PI 1

PO 1

TALLY HO

Example 2:

M 1

PT 1

P6 1

P5 1 TALLY HO

Pk
N

P3

P2 1

PI 1

PO 1

TALLY HO

7/30/70 Section 2.4.3. 9 - 2/2

2. U. 3.10 Area

AREA
___^ ——i <0perand S > <Count n>

1 ll 10 .0 .0 ,0 . ol

Count ones : Count the number of ones in S and

return the count to the Operand Stack as a halfword

integer under the following conditions:

If S contains not more than n one bits , then all

such points in S are counted, and the count, C, is

placed in the OS.

If S contains more than ri one bits,, the first n

points are counted and n+1 is placed in the OS.

Important : Counted points are erased (set to zero) in

the operand plane. A sequential TV-type scan of S is

initiated starting at (0,0) scanning in the positive

x direction. Ones encountered in the scan are counted.

S is copied into the M-plane . The ones of the M-plane

are listed and replaced by zeros. At the end of exe-

cution, the M-plane is copied into S .

Note: S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address, Count 0V.

T/13/T0 Section 2.U.3.10 - l/l

2,U. 3.11 List

LIST
| i;i | 1.0,0. .0.0 1.

1

<Operand S^ <Count n>

List plane: A sequential TV-type scan of S is

initiated starting at (x,y) = (0,0) scanning in the

positive x direction. The coordinate pairs (X,Y)

of one bits are sequentially stored in the Operand

Stack in the same format used in the scanner coordinate

mode. The angular coordinate, e, is not allowed. See

Section 2.4.3.1.1.

If S contains not more than n_ one bits, then all

such points in S are listed, and the count, C, is

placed in the Operand Stack.

If S contains more than n one bits, the first n

points are listed and n+1 is placed in the Operand Stack.

Important : The listed points are erased (set to zero)

in the operand plane.

S is copied into the M-plane. The ones of the M-plane

are listed and replaced by zeros. At the end of execution

the M-plane is copied into S . Note: S must be in the

Iterative Array and may not be the M-plane.

Indicators: Parity, Invalid Plane Address, Count OV.

7/15/70 Section 2.4.3.11 - l/l

2.U.3.12 Listsz ,-r

LISTSZ 1.1] 10.0 .0.1X 1

Operand S
1
> <Count n>

List plane and read short z-words : A sequential TV-type

scan of S is initiated starting at (x,y) = (0,0)

scanning in the positive x direction. The coordinate

pairs (X,Y) of one bits are sequentially stored in the

Operand Stack in the same format used in the scanner

coordinate mode. The angular coordinate, 9, is not

allowed. See Section 2.k. 3.1.1.

Following each coordinate pair the associated 8-bit

(l-byte) z-word contained in planes P8-P15 (Transfer

Memory) is listed right-justified in a halfword.

If S contains not more than n one bits, then all

such points in S are listed, and the count, C, is

placed in the Operand Stack.

If S contains more than n one bits, the first n

points are listed and n+1 is placed in the Operand stack.

Important : The listed points are erased (set to zero) in

the operand plane.

S is copied into the M-plane. The ones of the M-plane

are listed and replaced by zeros. At the end of execution

the M-plane is copied into plane S .

Note : S must be in the Iterative Array and may not be

the M-plane.

Indicators: Parity, Invalid Plane Address, Count 0V.

7/15/70 Section 2.U.3.12 - l/l

2.4.3.13 Listlz

LISTLZ
|
l : lll,0.0,0.1,n <0Perand S!> <Count *>

List plane and read long z-words : A sequential TV-type

scan of S is initiated starting at (x,y) = (0,0)

scanning in the positive x direction. The coordinate

pairs (X,Y) of one bits are sequentially stored in the

Operand Stack in the same format used in the scanner

coordinate mode. The angular coordinate, 9, is not

allowed. See Section 2.4.3.1.1.

Following each coordinate pair the associated 48-

bit (6 byte) z-word contained in planes P8-P55 (Transfer

Memory) is listed.

If S contains not more than n_ one bits, then all

such points in S_ are listed, and the count, C, is

placed in the Operand Stack.

If S contains more than n_ one bits, the first n points

are listed and n+1 is placed in the Operand Stack.

Important : The listed points are erased (set to zero) in

the operand plane.

S is copied into the M-plane. The ones of the M-plane

are listed and replaced by zeros. At the end of execution

the M-plane is copied into plane S .

Note : S must be in the Iterative Array and may not be

the M-plane.

Indicators: Parity, Invalid Plane Address, Count OV.

7/15/70 Section 2.4.3.13 - 1/1

2. 4. 3.l4 Listi _— m
LISTI ll .11 1.0.1 Q .i.ol

<0perand S^

List plane incremental: A sequential TV-type scan

of S is initiated starting at (x,y)=(0,0) scanning in the

positive x-direction until a one bit is encountered.

The coordinate pair of this point is returned to

the operand stack as two halfwords in the order Y, X.

Following the coordinate pair is an incremental

string corresponding to a contour trace of the figure.

See Section 2.4.3.1.2. The algorithm used may be

found in Seitz, C.L., "An Opaque Scanner for Reading

Machine Research" (MIT thesis).

At the completion of the tracing algorithm the

figure is deleted.

S.. must be in the Iterative Array and may not be

the M-plane.

Indicators: Parity, Invalid Plane Address.

7/15/TO Section 2.4.3.14 - l/l

2.U.3.15 Readlz a
READLZ 1,1 1,1,0 ,0.1,1

Read long z-word: The k8 bit (6 "byte) z-word at

the point specified by the coordinate pair in the

word at the top of the operand stack is pushed into

the operand stack.

The coordinate pair consists of two halfwords;

the first being the Y-coordinate, the second being the

-X. The pair is popped and the long z-word pushed

into the stack. If the point is in the virtual

Iterative Array the flags will be set to zero. If

the point is not in the virtual Iterative Array a

zero z-word with the flags set to one will be pushed.

Indicators: Parity, Coordinate 0V.

7/30/70 Section 2.14.3.15 - 1/1

2.4.3.16 Rderlz r-

1

RDERLZ 1 1 10 010 11 <Operand S >
j i

Read long z-word and erase point: The 48 bit (6 byte)

z-word at the point specified by the coordinate pair

in the word at the top of the operand stack is pushed

into the operand stack. If the specified point (in

S is a one, it is erased (set to zero). Otherwise

it is unchanged.

The coordinate pair consists of two halfwords:

the first being the Y-coordinate , the second being the

X. The pair is popped and the long z-word pushed

into the stack. If the point is in the virtual Iterative

Array the flags will be set to zero. If the point is

not in the virtual Iterative Array a zero z-word with

the flags set to one will be pushed.

S must be in the . Iterative Array and may not be

the M-plane.

Indicators: Parity, Invalid Plane Address, Coordinate OV.

7/30/70 Section 2.4.3.16 - l/l

2. k. 3.17 Erasep !_,

ERASEP TillilXOXD
<Operand Si>

Erase point: A sequential TV-type scan of S is

initiated starting at (x,y) = (0,0) scanning in the

positive x-direction until a one bit is encountered.

The one hit is then erased (set to zero).

Note : S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address.

1/15/10 Section 2.4.3.17 - 1/1

2. U. 3.18 Plot
E

PLOT
I 1. ll 1.1 .0 .1 .0 P I

<0perand S
1
> <0perand>

Plot plane: A string of points is plotted (set to l)

in S . The string of (X,Y) coordinates, specified by

the operand, is in the same format used in the scanner

coordinate mode. The angular coordinate, 0, is not

allowed. See Section 2. k. 3. 1.1.

Note : <_ X <_ l+095» 0<_Y<_U095-

Note : S must be in the Iterative Array and may not

be the M-plane. The contents of the M-plane will be

destroyed.

Indicators: Parity, Invalid Plane Address, Coordinate 0V

(Plot out of bounds).

7/15/70 Section 2.U.3.18 - l/l

2.1*. 3. 19 Plotsz

PL0TSZ ll. ill. 1.0 ,1 .0 .1.1
<0perand S > <0perand>

Plot plane and write short z-word: A string of

points is plotted (set to one) in S . The short z-word

(8-bits) associated with each coordinate pair is

written into planes P8-P15 (Transfer Memory) at the

plotted coordinate. The string of (X,Y) coordinates,

specified by the operand is in the same form as the

scanner coordinate mode. The angular coordinate, 6,

is not allowed. See Section 2. k. 3.1.1.

Note : <_ X <_ 1+095, 0<Y<_ 1+095-

The contents of the M-plane and the previous contents

of planes P8-P15 (at the plotted coordinates) will be

destroyed.

Note : S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address, Coordinate 0V

(Plot out of bounds).

7/15/70 Section 2. U. 3.19 - 1/1

2.4.3.20 Plotlz

PL0TLZ 11,1 1
11 O.rTTn Operand S

±
> <0perand>

Plot plane and write long z-word: A string of points

is plotted (set to one) in S . The long z-word (48-bits)

associated with each coordinate pair is written into

planes P8-P55 (Transfer Memory) at the plotted coordinate.

The string of (X,Y) coordinates is in the same form as

the scanner coordinate mode. The angular coordinate,

6, is not allowed. See Section 2.4.3.1.1.

Note : <_ X <_ 4095, <_ Y < 4095-

The contents of the M-plane and the previous contents

of planes P8-P55 (at the plotted coordinates) will he

destroyed.

Note : S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address, Coordinate 0V

(Plot out of bounds).

7/15/70 Section 2.4.3.20 - l/l

2.4.3.21 Plqti _
PL0TI | r i l

xlO 1 1 1
I

<Operand S^ <Operand>

Plot plane incremental: A string of points is plotted

(set to one) in S . The initial (X,Y) coordinate is in

the same format, used in the scanner incremental mode.

Subsequent bytes are interpreted according to the

incremental code. (See Section 2.4.3.1.2)

Note : S must be in the Iterative Array and may not

be the M-plane. The contents of the M-plane will be

destroyed.

Indicators: Parity, Invalid Plane Address, Coordinate OV

(Plot out of bounds).

7/15/70 Section 2.4.3.21 - l/l

2.4.3.22 Writlz _
Q

WRITLZ
| 1 111,0,0.1 1 ,0

|

<0perand S^

Write long z-word: A sequential TV-type scan of S

is initiated starting at (x,y) = (0,0) scanning in the posi-

tive x-direction until a one "bit is encountered. The 48-

bit (6 byte) z-word at the top of the 0S is popped and

then written into P8-P55 (Transfer Memory) at the coordinate

position of the one bit.

Note : S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address.

7/15/70 Section 2.4.3.22 - l/l

2.U.3.23 Wrerlz __

WRERLZ
I 1. ll 1.0.0.1 1.1 I

<0perand S^

Write long z-word and erase point: A sequential TV-type

scan of S is initiated starting at (x,y) = (0,0)

scanning in the positive x direction until a one bit

is encountered. The kQ bit (6 byte) z-word at the top

of the 0S is popped and then written into P8-P55

(Transfer Memory) at the coordinate position of the one

bit. The one bit is then erased (set to zero).

Note : S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address.

1/15/10 Section 2.U.3.23 - l/l

2.4.1+ Two-Plane Instructions

The two-plane instructions may be divided into two types.

The first two instructions are copy instructions useful in moving planes

around. The remainder of the two-plane instructions are logical

operations on planes. No planar complementation is provided as this

function is the same as the copy complement with the same plane specified

for both operands.

2.4.4.1 Copy

COPY
ID

1 1 1 1 1 I

I I I I I I I I

<Operand S><Operand S >

Sis copied into S . The contents of S remain

unchanged.

The disposition of the borders and contents of the

M-plane after execution are as follows:

LocfS^ Loc(S
2

) Disposition of Borders C(M)

IA TM Clear S
2

TM IA Drop S
2

IA IA Copy Unchanged

TM TM No borders S
2

Indicators: Parity, Invalid Plane Address.

7/10/70 Section 2. U.U.I - l/l

2.U.U.2 Copyc

COPYC
Q

1.111.1,1.0,0 1
<0perand S ><0perand S >

The complement of S is copied into S . The contents

of S remain unchanged. Note that a COPYC between two

planes in the TM (P8-P55) is not permitted.

The disposition of the borders and contents of the

M-plane after execution are as follows:

Loc(S) Loc(S
2

) Disposition of Borders C(M)

IA TM Clear S
2

TM IA Drop ^
IA IA Copy Complement Unchanged

TM TM Disallowed Disallowed

Indicators: Parity, Invalid Plane Address, TM-TM Request

7/10/70 Section 2.U.U.2 - l/l

2.J+.U.3 Fland ,—,

PLAND
|
1 l|li l Q l Q

[

<Operand S xOperand S >

Planar MD: The bitwise AND of planes S and S

(and their borders) replace the contents of plane S .

The contents of plane S remain unchanged. S and S

must be in the Iterative Array and may not be the M-plane.

Indicators: Parity, Invalid Plane Address.

7/10/70 Section 2.U.U.3 - l/l

2.k.k.k Plor __

PLOR
1 1 i | i x 1, 0, 1. 1

1

<0perand S
1
><0perand S

2
>

Planar OR: The bitwise OR of planes S and S

(and their borders) replace the contents of plane S .

The contents of plane S remain unchanged. S and S

must be in the Iterative Array and may not be the M-

plane

.

Indicators: Parity, Invalid Plane Address.

7/10/70 Section 2.U.U.U - 1/1

2.k.k.5 Plnand ,—,a
PLNAND

I 1 1 1 11110 0| <Operajid SxOperand S >

Planar NAND: The bitwise NMD of planes S and S

(and their borders) replace the contents of plane S .

The contents of plane S remain unchanged. S and S

must "be in the Iterative Array and may not be the M-

plane

.

Indicators: Parity, Invalid Plane Address

7/10/70 Section 2.U.U.5 - l/l

2.U.U.6 Plnor ,_,— m
PIJtfOR 1 1 1 1 1 1 II <Operand S.xOperand S >

_i—i—i—i—i—

i

i 2

Planar NOR: The bitwise NOR of planes S and S

(and their borders) replace the contents of plane S .

The contents of plane S remain unchanged. S and S

must be in the Iterative Array and may not be the M-

plane

.

Indicators: Parity, Invalid Plane Address.

7/10/70 Section 2.k. h. 6 - 1/1

2.U.U.7 Plexor ._

PLEXOR ll.ll 1. 1. 1,1, 1,01 <0perand S > <0perand S
2
>

Planar EXCLUSIVE OR: The bitwise EXCLUSIVE OR of

planes S and S (and their borders) replace the contents

of plane S, . The contents of plane S remain unchanged.

S and S must be in the Iterative Array and may not

be the M-plane.

Indicators: Parity, Invalid Plane Address

7/13/70 Section 2.k.k.J - 1/1

2.U.U.8 Pleqv ,_—^
El

PLEQV (l i l l 1 1 1 1 1 I

<Operand S
1
> <Operand S

2
>

I L

Planar EQUIVALENCE: The bitwise EQUIVALENCE of

planes S and S (and their borders) replace the

contents of plane S . The contents of plane S
p

remain unchanged. S and S must be in the

Iterative Array and may not be the M-plane.

Indicators: Parity, Invalid Plane Address

7/13/70 Section 2.U.U.8 - 1/1

2.4.5 Three-Plane Instructions

2.4.5.1 Connect „_,
[T] <Operand S xOperand S >

CONNECT |ii |i, 0, 1 11 l"| <Operand S xOperand DL>

This instruction determines the connectivity of the digi-

tized graph in S , the graph plane. The graph must con-

sist of ones on a field of zeros

.

Nodes of the graph are placed in S , the nodal or

context plane. Nodes must be zeros on a field of ones.

For each point set to one in the M-plane (the

initiation plane) a signal is allowed to propagate out-

ward provided the corresponding point in S is 1.

Propagation continues in the direction(s) specified in

the direction list (DL), along the graph plane lines

until the propagating signal reaches a point specified

as a node by S_.

The propagating signal is plotted in S . This

operation introduces a 'fuzziness' into S since zeros

which stop propagation are replaced by ones.

All planes must be in the IA and none can be the M-plane ,

The configuration of the Iterative Array during

the execution of a CONNECT instruction is shown in

Figure 2.4.5/1. This figure also gives the equations

for the propagation phase of the instruction.

Indicators: Parity, Invalid Plane Address.

7/10/70 Section 2.4.5 - 1/2

Logic Connection During
Graphic Search (Propagation Phase)

M

r» s
i

R

"Inbus" A
N

D

S
2

S
3

Out 1.

Out 2-

Out 8'

From Nearest Neighbors
in Direction List

Propagation Phase

II Out . VM+ INBUS •> S n
l 1

Direction
List

INBUS & S & S -> OUTBUS

"Outbus"

Figure 2.4.5: Stallactite Configuration During a CONNECT Instruction

7/10/70 Section 2.4.5 - 2/2

2.1*. 6 Multiple-Plane Instructions

2.1*. 6.1 Boole rrf

B00LE 11 1|U 1 I

<AL Byte> <Operand>

This instruction allows evaluation of an arbitrary

Boolean function of up to 72 (56) cells defined by a

cylinder consisting of a cell, its eight (six) nearest

neighbors in rectangular (hexagonal) mode and extending

these nine (seven) cells to planes P , ... , P where

< n < 7.

All evaluation of the Boolean function takes place

in the Iterative Array. AL is the Availability List

and tells what planes in the IA may be used as scratch

planes in the evaluation.

The operand phrase is the address of a variable

length field which describes in Polish notation the

Boolean function to be executed. (See Section 2.1*. 8

for the description of the syntax and examples).

Indicators: Parity, no variables in elementary functions

,

variables listed as both true and complemented, forbidden

OP(s) code, insufficient stack depth.

7/13/70 Section 2.1*. 6 - l/l

2.U.6.2 Gate IA m
i.ilo.o.i.o.o.ol

<IAM*RD ™rd>
GATEIA

This instruction allows the programmer to set the gates

of the Iterative Array directly according to the IAW.0RD

(5 bytes. plus flags). See below for the format of the

IAW0RD . No check is made to see if the IAW0RD is meaning

ful. Note that the neighbor numbering will depend on

the current topology of the Iterative Array.

(it may prove useful to define pseudo-ops in terms

of sequences of these instructions.)

Indicators: Parity.

7/13/70 Section 2.U.6.2 - 1/3

The IA Word has the following format,

CONTROL
BYTE

PLANE READ
BYTE

GATE NEIGHBOR
BYTE

PLANE WRITE
BYTE

IDENTIFICATION
BYTE

POATTRriT "RVnnr .
ouiAi inuij xj.L 1JJ •

TF OC GNM IC T0 TZ Z/0 D0
.1 i.

r
. . i i ,

TF - True/False Select

OC - Output Complement Select

GNM - Gate Neighbor M (Self M)

IC - Input Complement Select

T0 - Tally One's Select

TZ - Tally Zeroes Select

Z/0 - Pulse Zero/One

D0 - Gate Direct Out

PLANE READ BYTE PRM

PRO ,
PR1

,
PR2

,
PR3

,
PR 1* ,

PR5
.
PR6

.
PRT

PRO = Plane Read

PR1 = Plane Read 1

PR2 E Plane Read 2

PR3 e Plane Read 3

PRl+ E Plane Read k

PR5 e Plane Read 5

PR6 e Plane Read 6

PRT e Plane Read 7

PRM e Plane Read M

7/13/70 Section 2.U.6.2 - 2/3

Gate Neighbor Byte
GN8

GNO
,
GN1

,
GN2

, GN3 .GNU , GN5 . GN6 , GNT

GATE NO e Gate Neighbor

GATE Nl = Gate Neighbor 1

GATE N2 e Gate Neighbor 2

GATE N3 e Gate Neighbor 3

GATE NU e Gate Neighbor k

GATE N5 e Gate Neighbor 5

GATE N6 e Gate Neighbor 6

GATE NT e Gate Neighbor 7

GATE N8 e Gate Neighbor 8

Plane Write Byte
PWM

PW0
,
PW1

,
PW2

,
PW3

,
PWU

,
PW5

|

PW6 ,'FWf

PW0 e Plane Write

PW1 e Plane Write 1

PW2 e Plane Write 2

PW3 e Plane Write 3

PWU E Plane Write k

PW5 e Plane Write 5

PW6 E Plane Write 6

PWT e Plane Write 7

PWM e Plane Write M

ID Byte NE

E SE S SW W NW

where P = Plane

E = East Border

SE = Southeast Corner

S = South Border

SW = Southwest Corner

W = West Border

NW = Northwest Corner

N = North Border

NE = Northeast Corner

7/13/70 Section 2.U.6.2 - 3/3

2.k.l Border Instructions

The following set of instructions are normally used to load

and unload the contents of the Iterative Array.

All of the border instructions manipulate data in the same

format as the scanner raster mode. Fundamental to the raster mode is

the concept of cells. In the simple case, imagine the image divided

into many rectangular cells by a piece of screen wire laid over the image,

Each cell is assigned a gray level by the scanning unit. The gray scale

encoding is under program control and may be either 1, 2, k, or 8 bits.

The result of this encoding is a packed bit string (by rows) of gray

level information. Thus if a row has n cells and g bits of gray level

encoding, the length of the string will be L = g * n bits. If the

end of the row occurs within a byte, the byte is filled out with zeroes.

The Iterative Array may be thought of as a window viewing a

32 by 32 bit portion of the picture and of height equal to the number

of planes necessary to represent the gray level encoding.

See Figure 2.U.1/1 for the four cases of loading the interior

of the array.

1/9/10 Section 2.U.T - 1/2

DATA FORMAT
IN CORE

DATA FORMAT AT

ITERATIVE ARRAY BORDER REGISTER

ARBITRARY ADDRESS OF

FIRST BYTE IN CORE

MODE I

)RD

MODE 2

MODE 4

MODE 8

WORD

TRANSFER OF DATA BETWEEN CORE AND THE PATTERN ARTICULATION UNIT

, ,
Section 2.U.T - 2/2

2/25/71

III

2.U.7.1 Data Formats

2. U. 7. 1.1 Raster String

The raster string used by the PAU has the following format:

Gn G
i2

G
i3 •'• Gm

G
21

G
22

• • • G
2n

i t

t i

i t

G
kl

G
k2

. . . G.
kn

The string is packed and consists of 1, 2, k or 8 bit

characters (G. .) depending on the gray level encoding.
*J

If the string does not end on a byte boundary (G) the remainder
Kn

of the last byte is set to zero. The flag indicates the end of the scan

line.

7/9/70 Section 2.1*. 7.1.1 - 1/1

2.4.7.1.2 GBW Byte

The GBW Byte has the following format

Bits 0-1

Bits 2-3

Bits 4-5

8

Q 1 2 3. 4 5. 6

Gray scale level encoding

00-1 Bit

01-2 Bits

10-4 Bits

11-8 Bits

Border to be used

00 - North

01 - East

10 - South

11 - West

Specify width of data to be manipulated

00 - Interior (32 bits)

01 - Interior + Right Border (33 bits)

10 - Interior + Left Border (33 bits)

11 - Interior + Both Border (34 bits)

Bits 6,7 8 are not used

7/9/70 Section 2.4.7-1.2 - l/l

2.U.T.2 Loadb

L0ADB

m
1, 110,1,0,0 ,Q Q I

<GBW Byte><Operand>
c

Load border: Load border from storage according to

raster string (See Section 2. U. 7.1.1). The GBW Byte

(See Section 2. k. "J .1.2) specifies the number of bits

of Gray scale and the Border to be loaded. GBW also

specifies the Width of data to be loaded; either border

(33 bits), both borders (3^ bits), or neither border

(32 bits).

The operand phrase gives the address of the raster

string in core.

The previous contents of the border are overwritten.

The following table lists the planes loaded for a given

gray scale.

Number of bits of gray ((i) Planes used (LSB last)

1 P0

2 PI, P0

k P3, P2, PI, P0

8 P7, P6, P5, PU, P3, P2, PI, P0

Indicators: Parity

7/10/70 Section 2.U.7.2 - l/l

2.^.7.3 Storeb

ST0REB
H

1.1 0.1.0.0.1,0
<GBW Byte>

Store border: Store border by sending it to the 0S

in raster string format (see Section 2.U.7.1.1). GBW

(see Section 2. I*. 7.1.2) specifies the number of bits of

Gray scale and the Border to be stored. GBW also speci-

fies the Width of data to be stored; either border

(33 bits), both borders (3^ bits), or neither border

(32 bits).

The following table lists the planes stored for a given

gray scale.

Number of bits of gray (G) Planes used (LSB last)

1 P0

2 PI, P0

h P3, P2, PI, P0

8 P7, P6, P5, PU, P3, P2, PI, P0

Indicators: Parity

7/10/70 Section 2.U.7.3 - 1/1

PUSHB
m

1.1 1.0,0 .1
<GBW Byte><0perand>

c

Row load: Shift plane(s), including borders, one row

in the direction away from the border being loaded.

Then load border according to the raster string (see

Section 2. k. 7.1.1) received from storage. GBW (see

Section 2. k. 7.1.2) specifies the number of bits of

Gray scale and the Border to be loaded. GBW also

specifies the Width of data to be loaded; either border

(33 bits), both borders (3*+ bits), or neither (32 bits).

The operand phrase gives the address of the raster

string in core.

The previous contents of the border are overwritten.

The following table lists the planes loaded for a given

gray scale.

Number of bits of gray (:g) Planes Used (LSB last)

1 P0

2 PI, P0

k P3, P2, PI, P0

8 P7, P6
5
P5, P^, P3, P2, PI, P0

Indicators: Parity

7/10/70 Section 2.U.7- I+ - l/l

2.U.7.5 Pop^

P0PB

HI

1. ll o.i.o ,0 x .1

<GBW Byte>

Row store: Store border "by sending it to the 0S

in a raster string format (see Section 2. U. 7-1-1)-

Then shift the plane(s), including borders, one row in

the direction of the border being stored. GBW (see

Section 2. k. 7. 1.2) specifies the number of bits of Gray

scale and the Border to be stored. GBW also specifies

the Width of data to be stored; either border (33 bits),

both borders (3*+ bits), or neither border (32 bits).

The following table lists the planes stored for a given

gray scale.

Number of bits of gray (G)

1

2

k

8

Planes used (LSB last)

PO

PI, PO

P3, P2, PI, PO

P7, P6, P5, PU, P3, P2, PI, PO

Indicators: Parity

7/10/70 Section 2.U.7-5 " l/1

2.U.7.6 Moveb

M0VEB ^ <GBW Byte><Operand S >

1
,

IL| IL ,1.
, ,

Q .j. o | <0perand Sg>

Move and copy border: Shift S (in wrap-around mode)

one row in direction of border specified by GBW byte

(see Section 2. h. 7. 1.2). Then copy contents of this

border of S into the opposite border of S . Then

shift S back to its original position.

Both planes must be in the IA and neither may be the

M plane.

Indicators: Parity, Invalid Plane Address.

7/10/70 Section 2.U.7.6 - l/l

2.4.8 Information on Boole Instruction

2.4.8.1 Availability List

The format for the availability list is

12 3 U567
8

The planes available for scratch pad uses are indicated by

setting the appropriate bits to one. Note the flag bit of the avail-

ability list is always 0.

2.4.8.2 Form for Specifying General Boolean Functions

The syntax of the canonical form is formally defined as

follows

:

<function> ::= <term string> ; P.

<term string> ::= <term>
|
<term> ; <term string>

<term> ::= <elementary function> | <elementary function> <operator string>

<operator string> ::= < secondary operator> |< secondary operator>

<operator string>

Here an elementary function is defined as any function meeting

both of the following criteria:

(1) The domain of the function is restricted either to (a)

any one plane, or (b) the vertical column passing through

bit position 0.

(2) The function is a simple Boolean sum (OR) or a simple

Boolean product (AND) of the individual (true and/or

complemented) variables.

'P' identifies the output plane and ' .' is an end-of-string

indicator.

A secondary operator is defined as one of the conventional

AND (&), OR (|), and negation (—|) of Boolean Algebra. The Polish string

will be presented to the PAU in either of two formats. The two formats

are:

11/2/70 Section 2.4.8.2 - 1/4

True Criftplemented-

Address Variables Variables

Format X

Format Y

1miI»1i I i i I f r I I I » ' i.
1 * ' 1 ' ' '

J
i

* a
1

a 8y 12 ... 8012 ... 8

1 byte

3 bytes

M
0p(oy 0p(i)\

c(o) c(i)

The first information is in format X. From then on, the succeeding format is

context dependent. The meanings of the individual bits and fields are now de-

scribed.

Format X

a Meaning

(OR) operators connect the variables of the ele-

mentary function

(AND) operators connect the variables of the ele-

mentary function

Meaning

a horizontal elementary function is specifiec

a vertical elementary function is specified

7 Meaning

if horizontal elementary function, operand

plane is as previously defined

if horizontal elementary function, operand

plane is redefined by address field

True Variables

This is a list of all true variables appeari?

in the elementary function.

7/10/70 Section 2.U.8.2 - 2/U

Complemented Variables

This is a' list of all complemented variables

appearing in the elementary function.

Address

If P = and 7=1, the address field defines

a horizontal plane as follows (otherwise, the

field is ignored):

ABC Plane

1

10
Oil
10
10 1

110
111

1

2

3

k

5

6

7

Format Y (where s = 0, l)

C(s)

1

0P(s)

Meaning

Stop (i.e., period)

Continue

If C(s) = 1 , the three-bit 0P(s) field

has the following interpretation:

7/10/70 Section 2.14.8.2 - 3/1*

N L P Meaning

|

1
|

;

10 &

Oil &;

10 —i

10 1 —
I;

110 Forbidden

111
;

In other words, the individual bits have the following meanings:

N Meaning

a binary secondary operator is specified by

bit L

1 the operator is negation (unary), unless ";"

L Meaning

if binary operator, operator is (OR)

1 if binary operator, operator is & (AND)

P Meaning

no punctuation follows operator

ii . ii

punctuation following operator is j

NOTE: The ";" when not preceded by an

operator is interpreted as meaning

"next format is of type X" regardless

of whether it appears in 0P(l).

If C(s) = , the 0P(s) field bits (N,L,P)

are interpreted as the address of the final

horizontal plane:

7/10/70 Section 2.U.8.2 - h/h

N L P Plane

1 1

10 2

Oil 3

10 k

10 1 5

lio 6

111 7

In actual use, the complete set of auxiliary information required to

describe a function will consist of an initial format X group, followed by a mix

of data in formats X and Y. Format X is used when a new elementary function is

to be introduced, and format Y is used to introduce secondary operators. The

address in which the result is to be stored is given in the final format Y byte.

2.U.8.3 Examples Illustrating the Coding

2. k. 8.3*1 Purely Horizontal Logic

Consider the function

P6 = -1(-|(10)&(12)&(16)|(20))|(3M&(38)

In the canonical form it is written (where ' F' is the name of the Boolean func-

tion)

F: [-i(l0)&(l2)&(l6)];[20]|-n;[(3U)&(38)]|;6.

The code for this string is (Figure 2. k. 8.3.1/1)

•

7/10/70 Section 2.U.8.3 - 1/2

corresponding part
of string

a 6 y A:)DR

1 10
—v

—

TRUE

Pi
1 [—1(10)&(12)&(16)]

v
COMPLEMENTED

l|0|0|0|0l

X 10 1 1 [20]

Ml!o|o|i]i|o i l

_0
x liloli|c|i|T[olo

l
jo 00 [(3U)&(38)]

Y 0|0 l!l
I I ii I

11,0 l;6

OPfO 0P(1

CfO) C(l
Note: = Either '0' or '!'

Figure 2. k. 8. 3.1/1 Code for Horizontal Logic Example

7/10/70 Section 2.4.8.3 - 2/2

\

g,l+. 8.3.2 Purely Vertical Logic

Consider the example

P5 = (20)&(30)|-l(60)

In the canonical form, it is written (where 'F' is the name of the Boolean func-

tion)

F:[(20)ft(30)];[-l(60)]|;5.

rhe code for this string is (Figure 2. U. 8. 3.2/1)

.

a 6 Y &DDR

1 1

7T:L 1 1
el

3- Oj

10 10

OP (Y7
_ % ^/
OP (X)

C(0) C(l)

00

TRUE

corresponding
part of string:

[(2o)&(3o);

V
COMPLEMENTED

00 [-1(60)]

;5

Note: = Either '0' or *1'

Figure 2. h. 8. 3. 2/1 Code for Vertical Logic Example

7/10/70 Section 2.1*. 8. 3.2 - 1/1

2 t h . 8. 3 • 3 General Three-Dimensional Logic

Consider the function

P7 = -,(-
l
(i+a)&-,(50)&-.(6o) |(^)| -.(U5))

A canonical equivalent is (where 'F' is the name of the Boolean function)

F:[-i(^0)&-.(50)&-i(60)] j[(W0T|-|(U5)]|-i;7.

The code for this canonical form is (Figure 2.4.8.3.3/1). corresponding
part of string:

a 3 y ADDR

1 1 ? —v~
TRUE

Z-7"
ofj) [-i(l+0)8fi(50)«n(60)

1 l|l|l

1 o |o
1

1

COMPLEMENTED

[(Ult)KU5)]

13
[l 1 1 1| if

H
i|i)o|0|0|0|0l

OPfO) 0P(1

c(o) C(l)

Figure 2. k. 8.3.3/1

Note: = Either '0' or '1'

Code for Example of General Three-Dimensional Logic

Having Both Horizontal and Vertical Components

7/10 /TO Section 2.4.8.3.3 - l/l

oiAEC-427
(6/68)

, CM 3201

U.S. ATOMIC ENERGY COMMISSION
UNIVERSITY-TYPE CONTRACTOR'S RECOMMENDATION FOR
DISPOSITION OF SCIENTIFIC AND TECHNICAL DOCUMENT

(See Instructions on Reverse Side)

VEC REPORT NO. ^3^
COO-2118-0006

2. TITLE

ILLIAC III REFERENCE MANUAL
VOLUME II: Instruction Repertoire

J. YPE OF DOCUMENT (Check one):

[2)£- Scientific and technical report

[] b. Conference paper not to be published in a journal:

Title of conference

Date of conference

Exact location of conference.

Sponsoring organization

c. Other (Specify)

RECOMMENDED ANNOUNCEMENT AND DISTRIBUTION (Check one):

V$$- AEC's normal announcement and distribution procedures may be followed.

b. Make available only within AEC and to AEC contractors and other U.S. Government agencies and their contractors.

I I
c. Make no announcement or distrubution.

EASON FOR RECOMMENDED RESTRICTIONS:

UBMITTED BY: NAME AND POSITION (Please print or type)

B. H. McCormick
Principal Investigator
Illiac III Project

r9anization Department of Computer Science
University of Illinois
Urbana, Illinois

ignature

^3w-U.Ki«(Wi(L
Date

February 26, 1971

FOR AEC USE ONLY
EC CONTRACT ADMINISTRATOR'S COMMENTS, IF ANY, ON ABOVE ANNOUNCEMENT AND DISTRIBUTION
^COMMENDATION:

TENT CLEARANCE:

U a. AEC patent clearance has been granted by responsible AEC patent group.

J b. Report has been sent to responsible AEC patent group for clearance.

_J c. Patent clearance not required.

<*^

